Underground Accelerators and the Dresden Felsenkeller

Nuclear Astrophysics Experiments in Germany

Workshop on Nuclear Astrophysics in Germany

Darmstadt, 16.11.2016

Daniel Bemmerer

Underground accelerators and the Dresden Felsenkeller

LUNA 0.4 MV underground accelerator, Italy:

- New data on the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction, relevant for hydrogen shell burning
- Big Bang nucleosynthesis and the ${}^{2}H(p,\gamma){}^{3}He$ reaction

Future Felsenkeller 5 MV underground accelerator, Dresden/Germany:

- Background studies
- Status

Experimental Nuclear Astrophysics in Germany, an attempt at an overview

²²Ne(p,y)²³Na at LUNA, Gran Sasso, Italy

²²Ne(p, γ)²³Na resonance at E_{res}^{lab} = 189.5 keV

Mitglied der Helmholtz-Gemeinschaft

²²Ne(p, γ)²³Na, astrophysical reaction rate

Rate enhanced by more than a factor of 10!

F. Cavanna *et al.*, Phys. Rev. Lett. 115, 252501 (2015)

Might help explain Na-O anticorrelation in globular clusters

Mitglied der Helmholtz-Gemeinschaft

Three tools of observational cosmology

Mitglied der Helmholtz-Gemeinschaft

Observed nuclide abundance: BBN ⁷Li and the "Spite plateau"

- CMB-based predictions for ⁷Li and ⁶Li now use direct experimental cross section data.
- What about deuterium from the Big Bang?

Mitglied der Helmholtz-Gemeinschaft

Big Bang abundance of deuterium

- Observations of primordial deuterium now report 1.5% precision!
- Deuterium has the potential to probe cosmological parameters, independently from the microwave background!
- Current limitation: ${}^{2}H(p,\gamma){}^{3}He$ reaction rate, under study at LUNA.

Dresden Felsenkeller, below 47 m of rock

- γ-counting facility for analytics, established 1982
- Deepest underground γ-counting lab in Germany
- Contract enabling scientific use (since 2009)
- 4 km from TU Dresden, and from city center
- 25 km from HZDR Rossendorf campus

⁴⁴Ti production study: Konrad Schmidt *et al.*Phys. Rev. C 88, 025803 (2013)
Phys. Rev. C 89, 045802 (2014)

Slide 9

Background in γ -detectors (HPGe with active veto)

- One and the same HPGe detector (Eurisys Clover with active veto) used subsequently at different laboratories
- Background rate at 6-8 MeV γ-ray energy only a factor of 3 higher at Felsenkeller (110 m.w.e.) than at Gran Sasso
- Explanation: active veto suppresses remaining muon-induced effects

Tamás Szücs *et al.* Eur. Phys. J. A 48, 8 (2012) Eur. Phys. J. A 51, 33 (2015)

12 year old 5 MV Pelletron system from York/UK

- Spin-off company of York University doing ¹⁴C analyses by accelerator mass spectrometry
- Magnets, beamline, pumps, fully digital control
- MC-SNICS sputter ion source (C⁻ and H⁻ ions)
- 250 µA upcharge current (double pellet chains)
- → Well-suited for low-energy nuclear astrophysics
- Purchased by HZDR, brought to Dresden

24 July 2012: Loading of components in York

12 July 2012: Still assembled, in York

30 July 2012: Unloading of last component in Dresden

Felsenkeller status

Total investment needed+funded

- Purchase of 5 MV Pelletron (spent)
- Construction (TU Dresden, Excellence Initiative "support the best", K. Zuber)
- Planning, infrastructure (HZDR)

Technical capabilities

- 5 MV tandem with single-ended option
- ¹H⁺, ⁴He⁺, ¹²C⁺ beams
- Background almost as deep underground

Running cost will be covered by HZDR

- Rent for the tunnel
- Electricity, liquid nitrogen
- 1 scientist and 1 engineer

Construction ongoing August 2016 - August 2017

- Old floor has been removed, tunnel ceiling safety work underway
- Concrete-pouring from December 2016
- Opening of the facility September 2017

Mitglied der Helmholtz-Gemeinschaft

Experimentelle Nukleare Astrophysik Unter Tage ENAUT collaboration at Felsenkeller accelerator, Dresden

Experimental Nuclear Astrophysics in Germany: Facilities

GSI Darmstadt and FAIR

Cologne University

- 10 MV tandem, γ-ray spectroscopy
- 6 MV accelerator mass spectrometry

TU Darmstadt

S-DALINAC electron beam

HZDR Dresden

- Felsenkeller 5 MV underground accelerator
- 6 MV tandem: accelerator mass spectrometry, ion beam analysis
- 3 MV tandem: in-beam γ-ray spectroscopy, activation
- 40 kV, 200 kV, 500 kV implanters
- DT neutron generator (TU Dresden), neutron time of flight
- 40 MeV electron beam ELBE
- 200 MeV proton beam Oncoray

Frankfurt University

- FRANZ neutron source
- TU Munich 17 MV Tandem
- Q3D spectrograph, ion beam analysis
- Accelerator mass spectrometry

Experimental Nuclear Astrophysics in Germany: Institutions and main topics

GSI Darmstadt and FAIR

• Astrophysical r-process, including all of the below groups

Cologne University

• Astrophysical p-process

TU Darmstadt

• S-DALINAC experiments

HZDR Dresden

- H-, He-, C-burning, Big Bang nucleosynthesis
- ⁴⁴Ti nucleosynthesis

Frankfurt University

Astrophysical s-process

TU Munich

- Nova nucleosynthesis
- ⁶⁰Fe and supernovae

Nuclear Astrophysics Experiments in Germany, and Felsenkeller laboratory Dresden

- Nuclear Astrophysics experiments are necessary to understand nucleosynthesis, and possibly even stellar structure
- Experimental results can be surprising!
- The Felsenkeller underground accelerator will provide a unique low-background capability for low-background experiments in nuclear astrophysics.
- There is a viable landscape of experimental nuclear astrophysics facilities, and of experimental nuclear astrophysics groups, in Germany

