Nuclear Astrophysics at the Munich Tandem

Accelerator Mass Spectrometry

Nuclear Structure Studies with the Q3D Magnetic Spectrograph

Thomas Faestermann

Accelerator Mass Spectrometry

cross section measurements

- ${}^{58}Ni(n,\gamma){}^{59}Ni$ Ludwig et al., 2016

- ${}^{62}Ni(n,\gamma){}^{63}Ni$ Dillmann et al., 2010
- ${}^{78}Se(n,\gamma){}^{79}Se$ Dillmann et al., 2010
- $92Zr(n,\gamma)^{93}Zr$ waiting for FRANZ
- ${}^{64}Ni(\gamma,n){}^{63}Ni$ Dillmann et al., 2010
- ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ Nassar et al., unpubl.

SN produced radionuclides

⁶⁰Fe in ferromanganese crusts

K. Knie et al. 1999, 2004 C. Fitoussi et al. 2008

Competition from Canberra

A. Wallner et al., 2016 sediments + crusts

Deposition rates for sediment (150-kyr averaged data) and incorporation rates for two crust samples

and Munich?

P. Ludwig et al., 2016 Sediments coll. with S. Bishop

Samples from Earth

O Canberra

O Munich

Samples from Moon

L. Fimiani et al., 2016 depth profile

it is not from cosmics ! L. Fimiani et al., 2016

the Q3D

Nuclear structure for astrophysics

for modelling explosive H-burning

we need level properties near the proton separation energy S_p

Parikh et al: *Phys. Rev. C* (2009) Wrede et al: *Phys. Rev. C* (2010) Parikh et al: *Phys. Rev. C* (2010) Parikh et al: *Phys. Rev. C* (2011) Parikh et al: *Phys. Rev. C* (2011) Irvine et al: *Phys. Rev. C* (2013) Laird et al: *Phys. Rev. Lett.* (2013) Parikh et al.: *Phys. Lett. B* (2014) Fry et al: *Phys. Rev. C* (2015) Parikh et al: *Phys. Rev. C* (2015)

Nsangu et al: *JoP (2016)*

U3D

States in ¹⁹Ne at the p - threshold

Abundance of ¹⁸F in Novae?

one unknown is the cross section for: ${}^{18}F + p \rightarrow {}^{19}Ne^* \rightarrow {}^{15}O + \alpha$

Assumption: 3/2⁺ states just above the p-threshold have strong influence

But, none of the 3 states is compatible with 3/2⁺ !!!

Angular distributions

Q3D

neutron sources for the s-process

T. Faestermann, P. Mohr, R. Hertenberger, H.F. Wirth; Phys. Rev. C 92 (2015)

neutron sources for the s-process

The Q3D spectrograph at the MLL Tandem

CALA		
ATLAS		
retired		
+ many guests		

AMS at the MLL Tandem

AMS group:		
P. Ludwig	postdoc	
G. Korschinek	retired	
T. Faestermann	retired	
+ master students		