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Motivation
Late	type	stars:	
all	stellar	populaLons	
-6	<		[Fe/H]	<	+0.5	
30	-	50	elements:		He,	Li	…	,	U	
several	ionizaLon	stages		
Sun	as	a	reference

Huge	observaLonal	datasets:	
large	stellar	surveys	
SEGUE,	Gaia-ESO,	APOGEE,	Galah,	
total	~	2	million	spectra	

4MOST	(*2021):	+	20	million	spectra	

New:		extragalacLc	spectroscopy		
of	individual	stars,	and	star	clusters	
out	to	70	Mpc	
(Evans	et	al.	2011)
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New	techniques

Ting	et	al.	2016,	Rix	et	al.	2016,	Ting	et	al.	in	prep

Better	statistical	models	to	determine	stellar	abundances	may	soon	yield	way	more	information	on	rare-earths	
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New	models
recently,	most	efforts	focus	on	3D,	NLTE	
✓ 3D	convection	simulations	
✓ Non-local	thermodynamic	equilibrium
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Abundances	in	Galactic	stars
[Na/Fe]

NLTE

LTE

Lind	et	al.	(2011),	Jacobson	et	al.	(2015)

[O/Fe]

Amarsi	et	al.	(2015)

NLTE	3D	



[Mn/Fe]

[Co/Fe]

Battistini	&	Bensby	(2015)



[Ba/Fe] [Eu/Fe]

Mashonkina	et	al.	(2003)

Hansen	et	al.	(2013)

[Sr/Fe]

[Cu/Fe]

NLTE

Yan	et	al.	(2016)

Mashonkina	et	al.	(2003)

NLTE



10Matteucci	&	Brocato	(1990)

• initial	conditions	
• stellar	birthrate	function	
• stellar	yields	
• gas	flows	(infall,	outflow,	

radial	flow)

Chemical	Evolution	models	for	the	Milky	Way



11Andrews	et	al.	(2016)
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the	combined	uncertainty:	the	slope	and	mass	limits	of	the	IMF,	the	number	and	
delay	time	distribution	of	SNIa,	the	present-day	mass	in	gas	and	in	stars

[O/Fe]

Côté	et	al.	2016

[Fe/H]



13Côté	et	al.	2016

varying	other	parameters	in	the	chemical	evolution	models	





Major	
disagreement	for	
the	most	
chemical	
elements	
measured	in	cool  
stars	suggest	the	
current	
nucleosyntheiss	
yields	are	
incomplete.
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Successes
• Magnesium

Bergemann	et	al.	(2016b,	subm.)
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• Copper
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Yan	et	al.	(2016)
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Manganese
• observationally	challenging: 
hyperfine	splitting	

• strong	non-local	thermodynamic	
equilibrium	effects		

• but	excellent	observational	databases

• consistency	check	for	the	SNIa	DTD?	
• SN	II	underproduce	Mn	I	at	all	
metallicity 
WW95	:	Z-dependent	yields	

• Chandrasekhar-mass	SN	Ia	models	
(Fink	et	al.	2014):	enhanced	[Mn/Fe]	
~0.3	dex	

• Sub-Chandrasekhar-mass	SN	Ia	models	
(Woosley	&	Kasen	2011,	Seitenzahl	et	
al.	2013):	deficient	[Mn/Fe]	but	
increases	with	[Fe/H]	

Seitenzahl	et	al.	(2013)

near-Ch

sub-Ch



Manganese

• NLTE	[Mn/Fe]	trend		is	flat  
at	the	solar	value	for	all	
metallicities	

• NLTE	abundances	in	very	metal-
poor	stars	(Jacobson	&	Frebel	
2016)	confirm	solar	[Mn/Fe]	and	
strong	differental	NLTE	effect	

• is	consistent	with	sub-Ch	models,	
and	the	SNIa	time-delay	—>	SNII	
yields	are	in	question

Battistini	&	Bensby	(2015)

Jacobson	&	Frebel	(2016)



Cobalt
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Battistini	&	Bensby	(2015)

Jacobson	&	Frebel	(2016)



Chromium

Bonifacio	et	al.	(2012)

Bensby	et	al.	(2014)



The	main	challenges	and	questions
• N,	Na,	Mg,	K,	Ti,	V,	Ni	and	Zn	are	not	produced	in	

quantities	appropriate	to	the	solar	abundance	in	any	
CCSN	and	SNIa	model	(offsets	0.2	to	0.5	dex)  

• Chemical	evolution	models	do	not	describe	the	
observed	abundance	ratios	for	most	chemical	elements:	
• main	problems	for	elements	produced	in	explosion	

(K,	Sc,	Ti,	V,	Mn,	Co,	Ni);	also	C,N	
• low-[Z]:	need	for	an	additional	nuclesynthesis	

channel	?	Na,	Al,	Zn	
• The	next	major	step:	elements	with	similar	

nucleosynthetic	origin	(Fe-peak	—	Ti,	Mn,	Co,	Ni)


