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© r process nucleosynthesis



Ab-initio description of nuclear reactions
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Weak processes in stars
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We need to account for a broad range of conditions

@ Stellar evolution and accretion phases. Sensitive to relatively few
reactions: URCA pairs 2>Na->3Ne, 2> Mg->>Na,...for white dwarfs
and heavier nuclei neutron star crust. Accurate modeling of
individual transitions, important screening corrections.

@ Explosive phases. Type la supernova, Oxygen deflagration in ONe
cores. Competition between many electron capture and beta-decay
processes.

@ Core-collapse: core evolution sensitive to electron capture on exotic
neutron rich nuclei.



Weak processes in stars
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many of the relevant rates are based on simple analytical estimates
(ANA).
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Weak processes in stars
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Most relevant electron capture nuclei during collapse
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@ Mainly nuclei around N = 50 and N = 82. Sensitive to shell
structure far from stability.

o Theoretical challenge: description of correlations across shell
closures.

@ Many of the relevant nuclei are becoming experimentally accessible.



Weak processes in stars
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@ Many different processes contributing during different phases:
explosion, neutron star deleptonization.

o Consistent treatment with underlying experimentally constrained
EoS.

@ Code implementations often introduce errors of order the claimed
accuracy.

@ What is their role in mergers?



Weak processes in stars
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Having accurate neutrino spectra is also GT: (PHe, t), Zegers+ 2006; Forbidden: RPA
important for the production of several BMgsy, o PAse
nuclei ("Li, ''B, '°F, including 20 Al).
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r process nucleosynthesis
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@ Known mass
O Known half-life
O r—process waiting point (ETFSI-Q)

N=184

The r-process requires the knowledge of
N=126 the properties of extremely
r—process path neutron-rich nuclei:

BEES N=w2

@ Nuclear masses.

@ Beta-decay half-lives.
@ Neutron capture rates.

@ Fission rates and yields.



r process nucleosynthesis
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Ejection of very neutron-rich material in mergers results in abundance
distributions insensitive to variations of astrophysical conditions. Sensitivity to
nuclear physics input remains.
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r process nucleosynthesis
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Theoretical models do rather well far from stability!
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Spread due to small differences in symmetry energy (~ 0.5 MeV, smaller
experimental range 29.0-32.7).



r process nucleosynthesis
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Very similar predictions for Q-values (relevant quantity).
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r process nucleosynthesis
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r process nucleosynthesis
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Liddick, et al., Phys. Rev. Lett. 116, 242502 (2016)
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@ Experimental constrains in gamma-strength far from stability.

@ Understanding low energy upbend and behaviour with neutron
excess.

o Extending reaction model beyond statistical treatment.



Beta-decay rates determine the speed of
matter flow from light to heavy nuclei.

r-process path determined by neutron
separation energies

nuclei with largest impact are those with
larger instantaneous half-lives.

Despite tremendous progress at RIB
facilities (RIBF at RIKEN) most of the
half-lives are based on theoretical
calculations.

Two microscopic calculations (GT+FF)
have become available:

@ Covariant density functional theory
+ QRPA (Marketin+ 2016)

o Skyrme finite-amplitude method
(Mustonen & Engel 2016)

r process nucleosynthesis
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Mzaurketin & GMP 2016
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r process nucleosynthesis
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The impact of different fission barriers and yields has not been
sufficiently explored.
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r process nucleosynthesis
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Understanding the nuclear physics signatures in kilonova light curves

104 - -
1040 .
1039

1038
1037 _— FRDM (Beta-decay dominates)
t -—- DZ31 (Alpha-decay dominates)
1036 L ! ! ! ! !
0 5 10 15 20 25 30
Days

Lpo (ergs s~

Ratio of luminosities at peak value and at late times can be used to constrain the
produced amount of nuclei between Pb and U.
Barnes, Kasen, Wu, GMP, Ap) 829, 110 (2016).
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