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Ab-initio description of nuclear reactions

Extending ab-initio approaches
for a proper treatment of
continuum.

Cluster phenomena in light
nuclei (Hoyle state)

Different approaches available.
Fermion Molecular
Dynamics
No-Core Shell Model with
Continuum
Nuclear Lattice

Dohet-Eraly, et al, PLB 757, 430 (2016)
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Stellar electron capture and beta-decay

We need to account for a broad range of conditions

Stellar evolution and accretion phases. Sensitive to relatively few
reactions: URCA pairs 23Na-23Ne, 25Mg-25Na,. . . for white dwarfs
and heavier nuclei neutron star crust. Accurate modeling of
individual transitions, important screening corrections.

Explosive phases. Type Ia supernova, Oxygen deflagration in ONe
cores. Competition between many electron capture and beta-decay
processes.

Core-collapse: core evolution sensitive to electron capture on exotic
neutron rich nuclei.
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Range of nuclei for Oxygen deflagration

many of the relevant rates are based on simple analytical estimates
(ANA).

Figure from Sam Jones
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Electron captures during collapse

Most relevant electron capture nuclei during collapse
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Sullivan et al., ApJ 816, 44 (2015)

Mainly nuclei around N = 50 and N = 82. Sensitive to shell
structure far from stability.
Theoretical challenge: description of correlations across shell
closures.
Many of the relevant nuclei are becoming experimentally accessible.
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Neutrino-matter interactions in supernova

0.5 1 2 3 5 10
0.48

0.5

0.52

0.54

0.56

0.58

t − tbounce [s]

Y
e

Ref. run
+ weak magn.
+ wm + n decay

0

20

40

60

80

S
 [

k
B

/b
ar

y
o
n
]

S

Ye

Many different processes contributing during different phases:
explosion, neutron star deleptonization.
Consistent treatment with underlying experimentally constrained
EoS.
Code implementations often introduce errors of order the claimed
accuracy.
What is their role in mergers?
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Neutrino nucleus reactions
Having accurate neutrino spectra is also
important for the production of several
nuclei (7Li, 11B, 19F, including 26Al).
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Making Gold in Nature: r-process nucleosynthesis
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The r-process requires the knowledge of
the properties of extremely
neutron-rich nuclei:

Nuclear masses.

Beta-decay half-lives.

Neutron capture rates.

Fission rates and yields.
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r process in dynamical ejecta from mergers

Ejection of very neutron-rich material in mergers results in abundance
distributions insensitive to variations of astrophysical conditions. Sensitivity to
nuclear physics input remains.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

ab
u

n
d

an
ce

s 
at

 1
 G

y
r

FRDM

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

120 140 160 180 200 220 240

ab
u

n
d

an
ce

s 
at

 1
 G

y
r

mass number, A

HFB21

WS3

120 140 160 180 200 220 240

mass number, A

DZ31

Mendoza-Temis, Wu, Langanke, GMP, Bauswein, Janka,
PRC 92, 055805 (2015)



Ab-initio description of nuclear reactions Weak processes in stars r process nucleosynthesis

Theoretical masses far from stability

Theoretical models do rather well far from stability!

Sn (Z=50) Isotopes Mumpower + 2016

Spread due to small differences in symmetry energy (∼ 0.5 MeV, smaller
experimental range 29.0-32.7).
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Comparison S 2n

Very similar predictions for Q-values (relevant quantity).
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Variations in localized regions responsible for different abundances
predictions.
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Outlook: addressing systematic diff. between mass models

Most of the differences between mass
models originate due to:

Treatment of transitional nuclei
(shape coexistence). Requires beyond
mean field techniques (Rodríguez+
2015)

Proper description odd and odd-odd
nuclei.

∆(3)(N) = (S n(N + 1) − S n(N))/2
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Constraining neutron capture rates

Liddick, et al., Phys. Rev. Lett. 116, 242502 (2016)
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Experimental constrains in gamma-strength far from stability.

Understanding low energy upbend and behaviour with neutron
excess.

Extending reaction model beyond statistical treatment.
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Global beta-decay calculations

Beta-decay rates determine the speed of
matter flow from light to heavy nuclei.

r-process path determined by neutron
separation energies

nuclei with largest impact are those with
larger instantaneous half-lives.

Despite tremendous progress at RIB
facilities (RIBF at RIKEN) most of the
half-lives are based on theoretical
calculations.

Two microscopic calculations (GT+FF)
have become available:

Covariant density functional theory
+ QRPA (Marketin+ 2016)
Skyrme finite-amplitude method
(Mustonen & Engel 2016)

Marketin & GMP 2016
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Fission barriers

The impact of different fission barriers and yields has not been
sufficiently explored.

Goriely & GMP 2015 S. Giuliali

Goriely et al 2007

Möller et al 2009

Giuliani et al 2016
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Kilonova light curve

Understanding the nuclear physics signatures in kilonova light curves
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Ratio of luminosities at peak value and at late times can be used to constrain the
produced amount of nuclei between Pb and U.
Barnes, Kasen, Wu, GMP, ApJ 829, 110 (2016).
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