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✴EOS information from GW signal

✴Nucleosynthesis: quasi-circular and eccentric binaries

✴Electromagnetic counterparts
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The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

•For NSs the question is more subtle: the merger leads to an 
hyper-massive neutron star (HMNS), ie a metastable equilibrium: 

  NS + NS         HMNS + ... ?         BH + torus + ... ?         BH

•BH+torus system may tell us 
on the central engine of GRBs

artist impression (NASA)

Abbott+ 2016

Wex 2016

•HMNS phase can provide 
clear information on EOS 



Broadbrush picture

proto-magnetar? FRB?



merger           HMNS           BH + torus

Quantitative differences are produced by:

• total mass (prompt vs delayed collapse)

• mass asymmetries (HMNS and torus)

• soft/stiff EOS (inspiral and post-merger)

• magnetic fields (equil. and EM emission)

• radiative losses (equil. and nucleosynthesis)



How to constrain the EOS



binary black holes

Anatomy of the GW signal
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important

Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible

Anatomy of the GW signal



Anatomy of the GW signal
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post-merger: quasi-periodic emission of bar-deformed HMNS
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Collapse-ringdown: signal essentially shuts off.

Anatomy of the GW signal



Anatomy of the GW signal
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Chirp signal 
(track from 
low to high 
frequencies)

Cut off (very 
high freqs)

clean peak 
at high freqs

transient (messy 
but short)



In frequency space

courtesy of Jocelyn Read
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Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from EOS
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This is GW spectroscopy!

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from EOS



A new approach to constrain the EOS
Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016…

merger 
frequency



A new approach to constrain the EOS
Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016…



Many other simulations have 
confirmed this (Bernuzzi+, 2014, 
Takami+, 2015, LR+2016) .

“surprising” result: quasi-
universal behaviour of GW 
frequency at amplitude peak 
(Read+2013)
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Quasi-universal behaviour: inspiral



Quasi-universal behaviour: post-merger
We have found quasi-
universal behaviour: i.e., 
the properties of the 
spectra are only weakly 
dependent on the EOS.
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LS220 This has profound 
implications for the 
analytical modelling of the 
GW emission: “what we 
do for one EOS can be 
extended to all EOSs.”



Correlations with Love 
number found also for high 
frequency peak f2
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Correlations also with compactness 
These other correlations are 
weaker but equally useful.

Quasi-universal behaviour: post-merger



An example: start from equilibria

Assume that the GW 
signal from a binary 
NS is detected and 
with a SNR high 
enough that the two 
peaks are clearly 
measurable.
Consider your best 
choices as candidate 
EOSs



An example: use the M(R,f1) relation

The measure of the 
f1 peak will fix a 
M(R,f1) relation and 
hence a single line in 
the (M, R) plane.
All EOSs will have 
one constraint 
(crossing).



An example: use the M(R,f2) relations

The measure of the f2 
peak will fix a relation 
M(R,f2,EOS) for each 
EOS and hence a 
number of lines in the 
(M, R) plane.
The right EOS will 
have three different 
constraints (APR, 
GNH3, SLy excluded)



An example: use measure of the mass

If the mass of the 
binary is measured 
from the inspiral, an 
additional constraint 
can be imposed.
The right EOS will 
have four different 
constraints. Ideally, a 
single detection 
would be sufficient.



This works for all EOSs considered
In reality things will be 
more complicated. The 
lines will be stripes; 
Bayesian probability to 
get precision on M, R.
Some numbers: 
•at 50 Mpc, freq. 
uncertainty from Fisher 
matrix is 100 Hz

•at SNR=2, the event rate 
is 0.2-2 yr-1for different 
EOSs.



Dynamically captured binaries and 
nucleosynthesis



animations by J. Papenfort, L. Bovard, LR



0 10 20 30 40

t [ms]

10�5

10�4

10�3

10�2

10�1

M
ej

[M
�

]

LK RP5

LK RP7.5

LK RP10

LK QC

Mass ejection
�Mass ejected depends on 
impact parameter and takes 
place at each encounter.
�Quasi-circular binaries 
have smaller ejected masses 
(1-2 orders of magnitude)
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�Mass ejected depends on 
whether neutrino losses are 
taken into account (less 
ejected mass if neutrinos are 
taken into account)
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Waveforms have complex 
morphology: oscillations triggered 
after first encounter and typical 
HMNS signal after merger

Improved neutrino 
treatment (M0) 
leads to larger 
values of  Ye at high 
latitudes



Distributions in electron fraction, entropy, velocity
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Nucleosynthesis
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�Ejected matter undergoes nucleosynthesis as expands and cools.
�Abundance pattern for A>120 is robust and good agreement 
with solar (2nd and 3rd peak well reproduced)
�Abundances very robust: essentially the same for eccentric or 
quasi-circular binaries



Macronova emission
Energy via radioactive decay of r-process nuclei powers transients 
in optical/near-infrared with peak emission after (Grossman+ 14)

tpeak = 4.9
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The peak bolometric luminosity is estimated to be (“ectonova”)

with radioactive energy release a power law ✏̇ = ✏̇0(t/t0)
�↵, ↵ ' 1.3

Eccentric binaries: ~ 4 times more luminous than quasi-circular ; 
delayed peak emission: ~ 8 days (cf. 1.5 days)



✴Modelling of binary NSs in full GR is mature: GWs from the 
inspiral can be computed with precision of binary BHs

✴Spectra of post-merger shows clear peaks, some of which are 
”quasi-universal”. If observed, will set tight constraints on EOS

✴ Eccentric binaries are rare but with larger ejected matter and 
macronova emission.“high-A” nucleosynthesis very robust

Conclusions


