"From Few-Nucleon Forces to Many-Nucleon Structure" ECT*, Trento, June 10-14, 2013

Three-Nucleon Forces in Neutron Rich and Open-Shell Isotopes

C. Barbieri and A. Cipollone (U. of Surrey, UK)

- V. Somà (TU Darmstadt & EMMI, Germany)
- P. Navrátil (TRIUMF, Canada)
- T.Duguet (CEA Saclay, France)

Outilne:

- Concept of spectral functions
- Dyson formalism for finite (closed-shell) nuclei
- Inclusion of 3NF and fluorine/nitrogen driplines
- Gorkov-GF for open shells

A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th]

V. Somà, CB, and T. Duguet, Phys. Rev. C 87, 011303 (2013) V. Somà, T. Duguet, and CB, Phys. Rev. C 84, 064317 (2011)

Towards a unified description of nuclei

Open issues @ mid masses are:

→ Need of good nuclear Hamiltonians (3N forces mostly!)

→ Structure calculations are limited to closed-shells or A±1, A±2

 → Ab-Initio link between structure and reactions.
 (BUT calculations are GOOD!!!)

UNIVERSITY OF

Green's functions can be naturally extended to: Scattering observable <u>Open shell nuclei</u>

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasi- particles and holes:

$$g_{\alpha\beta}(E) = \sum_{n} \frac{\langle \Psi_{0}^{A} | c_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | c_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{n}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | c_{\beta}^{\dagger} | \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | c_{\alpha} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{k}^{A-1}) - i\eta}$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Calculating the spectral function: FRPA, ADC(3), and the like...

Faddeev-RPA in two words ...

• A complete expansion requires <u>all types</u> of particle-vibration coupling:

- ✓ $g^{II}(\omega)$ → pairing effects, two-nucleon transfer
- $\checkmark \Pi^{(ph)}(\omega) \rightarrow$ collective motion, using RPA or beyond
- ✓ Pauli exchange effects
- The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering
- Finite nuclei: \rightarrow require high-performance computing

Self-Consistent Green's Function Approach

Accuracy of FRPA - simple atoms/molecules

binding, eq. bond distances, \rightarrow ionization energies (molecules)

98-99% of correlation energy is recovered

< 1% of tot. binding energy

		FTDAc	FRPAc	CCSD(T)	FCI	Expt.
H_2						
	E_0	-1.161	-1.161	-1.164	-1.164	-1.175
	r_{H-H}	0.757	0.757	0.761		0.741
	I	16.03	16.03	16.12		16.08
BeH_2						
	E_0	-15.831	-15.832	-15.835	-15.836	-
	r_{Be-H}	1.337	1.337	1.339		1.340
	I	11.78	11.76	11.89		-
HCl						
	E_0	-460.256	-460.255	-460.254		-
	r_{H-Cl}	1.297	1.293	1.290		1.275
	I	12.24	12.24	12.26		-
\mathbf{HF}						
	E_0	-100.224	-100.228	-100.228	-100.231	-
	r_{H-F}	0.916	0.913	0.920		0.917
	I	15.70	15.54	15.42		16.12
H_2O						
	E_0	-76.240	-76.236	-76.241		-
	r_{H-O}	0.964	0.962	0.967		0.958
	Λ_{O-H-O}	102	102	102		104
	I	12.15	12.21	11.94		12.61

binding energies (atoms)

	Hartree-Fock	FTDA	FRPA	CCSD	Experiment
Не	-2.8617(+42.0)	-2.9028(+0.9)	-2.9029(+0.8)	-2.9039(-0.2)	-2.9037
Be ²⁺	-13.6117(+43.9)	-13.6559(-0.3)	-13.6559(-0.3)	-13.6561(-0.5)	-13.6556
Be	-14.5731(+94.3)	-14.6438(+23.6)	-14.6436(+23.8)	-14.6522(+15.2)	-14.6674
Ne	-128.5505(+387.8)	-128.9343(+4.0)	-128.9381(+0.2)	-128.9353(+3.0)	-128.9383
Mg^{2+}	-198.837(+444)	-199.226(-5)	-199.228(-7)	-199.225(-4)	-199.221
Mg	-199.616(+438)	-200.048(+6)	-200.052(+2)	-200.050(+4)	-200.054
Ar	-526.820(+724)	-527.543(+1)	-527.548(-4)	-527.536(+8)	-527.544
$\sigma_{\rm rms}$ [mH]	392	9.5(3.6)	9.5(3.4)	6.9(4.2)	

NB: energies in Hartree errors in mHartree

[M. Degroote, D. van Neck, C. B. Phys. Rev. A 83, 042517 (2011); 85, 012501 (2012)]

Accuracy of FRPA - simple atoms/molecules

Accuracy of FRPA - simple atoms/molecules

[M. Degroote, D. van Neck, C. B. Phys. Rev. A 83, 042517 (2011); 85, 012501 (2012)]

NB: energies in Hartree errors in mHartree

Scaling - intermediate state representation methods

TABLE I. Characteristics of nD-ADC and CC methods (explicit configuration space, perturbation-theoretical consistency for ionization energies (Ω), and ground-state (E_0) energies scaling).

			Ω		
Method	Configuration space	1h	2 <i>h</i> -1 <i>p</i>	E_0	Scaling ^a
ADC(2)	1h, 2h-1p	2	0	2	n^4
ADC(2)-E	1 <i>h</i> , 2 <i>h</i> -1 <i>p</i>	2	1	2	n^5
CCSD	1h, 2h-1p	2	1	3	$n^6 \simeq n_1^4 n_2^2$
ADC(3)	1 <i>h</i> , 2 <i>h</i> -1 <i>p</i>	3	1	3	n^5
CCSDT	1h, 2h-1p, 3h-2p	3	2	4	n^8
	Method ADC(2) ADC(2)-E CCSD ADC(3) CCSDT	MethodConfiguration spaceADC(2) $1h$, $2h$ -1 p ADC(2)-E $1h$, $2h$ -1 p ADC(2)-E $1h$, $2h$ -1 p CCSD $1h$, $2h$ -1 p ADC(3) $1h$, $2h$ -1 p CCSDT $1h$, $2h$ -1 p , $3h$ -2 p	MethodConfiguration space $1h$ ADC(2) $1h, 2h-1p$ 2ADC(2)-E $1h, 2h-1p$ 2CCSD $1h, 2h-1p$ 2ADC(3) $1h, 2h-1p$ 3CCSDT $1h, 2h-1p, 3h-2p$ 3	$\begin{array}{c c} & & & & & \\ \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c c} & & & & \\ \hline & & \\ \hline & & \\ \hline Method & space & & \\ \hline ADC(2) & & \\ ADC(2)-E & & \\ 1h, & 2h-1p & & 2 & 0 & 2 \\ ADC(2)-E & & \\ 1h, & 2h-1p & & 2 & 1 & 2 \\ CCSD & & \\ 1h, & 2h-1p & & 2 & 1 & 3 \\ ADC(3) & & \\ 1h, & 2h-1p & & 3 & 1 & 3 \\ CCSDT & & \\ 1h, & 2h-1p, & 3h-2p & & 3 & 2 & 4 \\ \end{array}$

[A. B. Trofimov and J. Schirmer, J. Chem. Phys. 123, 144115 (2005)
 F. Mertins and J. Schirmer, Phys. Rev. A53, 2140 (1996)

Three-nucleon interactions

\rightarrow application to nuclei \rightarrow need new formalism?

A. Cipollone, P. Navratil, CB arXiv:1303.4900 [nucl-th] arXiv:1211.3315 [nucl-th]

Modern realistic nuclear forces

Dyson equation

* Propagators solves the Dyson equations

$$g_{ab}(\omega) = g_{ab}^{0}(\omega) + \sum_{cd} g_{ac}^{0}(\omega) \Sigma_{cd}(\omega) g_{db}(\omega)$$

* (Hole) single particle spectral function

$$S_{ab}^{h}(\omega) = \frac{1}{\pi} Im g_{ab}(\omega) = \sum_{k} \langle \Psi_{k}^{A-1} | c_{b} | \Psi_{0}^{A} \rangle \langle \Psi_{0}^{A} | c_{a}^{\dagger} | \Psi_{k}^{A-1} \rangle \, \delta(\omega - (E_{0}^{A} - E_{k}^{A-1}))$$

* Koltun sum rule (with NNN interactions):

* NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to <u>non-contracted</u> 2-Body interaction

pure 3-Body contribution

- Contractions are with <u>fully correlated density</u> <u>matrices</u> (BEYOND a normal ordering...)

* NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to <u>non-contracted</u> 2-Body interaction

- Contractions are with <u>fully correlated density</u> <u>matrices</u> (BEYOND a normal ordering...)

* NNN forces can enter diagrams in three different ways:

→ Define new 1- and 2-body interactions and use <u>only</u> interaction-irreducible diagrams

 Contractions are with <u>fully correlated density matrices</u> (BEYOND a normal ordering...)

NNN forces in FRPA/FTDA formalism

A. Cipollone, CB, P. Navrátil

Then:

...approximations and some improvements still being assessed - this is all <u>work in progress</u>

NNN forces in FRPA/FTDA formalism

A. Cipollone, CB, P. Navrátil

 \rightarrow Ladder contributions to static self-energy are negligible (in oxygen)

Error estimates for the oxygen chain

A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th]

- Odd-even isitopes from nucleon addition (A+1) and removal (A-1):

$$E^{A\pm 1} = \pm \varepsilon_0^{A\pm 1} [\widetilde{H}(A\pm 1)] + E_0^A [\widetilde{H}(A\pm 1)]$$

- C.O.M. correction important ¹³O: 1.65 \rightarrow 0.19 MeV, ¹⁵O 1.03 \rightarrow 0.02MeV
- discrepancy up to 400 keV (< 1% BE)

Error estimates for the oxygen chain

A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th]

UNIVERSITY OF

- Total error on predicted binding energies of $\approx 5\%$
- Max. deviation from experiment $\approx 3\%$

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th]

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

 \rightarrow d3/2 raised by genuine 3NF

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th]

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

 \rightarrow d3/2 raised by genuine 3NF

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Proton spectral function of Oxygens A. Cipollone, CB, P. Navrátil 1.64 1.2 1.8 0.64 0.0 0.0 $2s_{1/2}$ 0 2N+3N(ind) 2N+3N(full) s_{1/2} $d_{5/2}$ $1d_{5/2}$ $\epsilon^{\rm A\pm 1}_i \, [{ m MeV}]$ -10p_{1/2} $S_{^{24}O}^{(p)}(r,\omega) \ [fm^{-3}MeV^{-1}]$ d_{3/2} p_{3/2} 1.5 s_{1/2} -20²²O: 1 $1p_{1/2}$ -30 0.5 r lim -40¹⁴O ¹⁶O ²²O ²⁴O ²⁸O -30 E_F -60 -50 6 -40 -10 -20 0 s_{1/2} d_{5/2} S^(p)₁₆₀(r,ω) [fm⁻³MeV⁻¹] p_{3/2} p_{1/2} s_{1/2} 1.5 s_{1/2} p_{1/2} $d_{5/2}$ 1 ¹⁴O: S^(p)₂₄₀(r,ω) [fm⁻³MeV⁻¹ 0 $d_{3/2}$ 1.5 s_{1/2} p_{3/2} 0.5 ²⁴O: 1 -50 -10 E_F 0.5 -40 -30 2 6 -20 0 10 r Ihm -60

UNIVERSITY OF

Neutron spectral function of Oxygens

A. Cipollone, CB, P. Navrátil

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]

\rightarrow Analysis of ¹⁴O(d,t)¹³O and ¹⁴O(d,³He)¹³N transfer reactions @ SPIRAL

Reaction	E^* (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\frac{C^2 S_{\rm th}}{0p+2\hbar\omega}$	R _s (WS)	$C^2 S_{exp}$ (SCGF)	$C^2 S_{\text{th}}$ (SCGF)	R _s (SCGF)
14 O (<i>d</i> , <i>t</i>) 13 O	0.00	3/2-	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
16 O (<i>d</i> , <i>t</i>) 15 O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
18 O (<i>d</i> , 3 He) 17 N [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- Overlap functions and strengths from GF
- Rs independent of asymetry

Approaching open-shells in the mid-mass region:

 Gorkov theory
 proof-of-principle results at 2nd order

V. Somà, CB, and T. Duguet, Phys. Rev. C 87, 011303 (2013)
V. Somà, T. Duguet, and CB, Phys. Rev. C 84, 064317 (2011)

Going to open-shells: Gorkov ansatz

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

₩ Ansatz

$$... \approx E_0^{N+2} - E_0^N \approx E_0^N - E_0^{N-2} \approx ... \approx 2\mu$$

* Auxiliary many-body state

$$|\Psi_0\rangle \equiv \sum_N^{\text{even}} c_N |\psi_0^N\rangle$$

Mixes various particle numbers

 $\longrightarrow \quad \text{Introduce a "grand-canonical" potential} \qquad \Omega = H - \mu N$ $\implies \quad |\Psi_0\rangle \quad \text{minimizes} \quad \Omega_0 = \langle \Psi_0 | \Omega | \Psi_0 \rangle$

under the constraint $N = \langle \Psi_0 | N | \Psi_0
angle$

Gorkov Green's functions and equations

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

** Set of 4 Green's functions

$$\begin{aligned} i G_{ab}^{11}(t,t') &\equiv \langle \Psi_0 | T \left\{ a_a(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle &\equiv \int_{b}^{a} \\ i G_{ab}^{12}(t,t') &\equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b^{\dagger}(t') \right\} | \Psi_0 \rangle &\equiv \int_{b}^{a} \\ i G_{ab}^{12}(t,t') &\equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle &\equiv \int_{b}^{a} \\ \end{aligned}$$

[Gorkov 1958]

$$\mathbf{G}_{ab}(\omega) = \mathbf{G}_{ab}^{(0)}(\omega) + \sum_{cd} \mathbf{G}_{ac}^{(0)}(\omega) \, \mathbf{\Sigma}_{cd}^{\star}(\omega) \, \mathbf{G}_{db}(\omega)$$

Gorkov equations

$$\boldsymbol{\Sigma}_{ab}^{\star}(\omega) \equiv \begin{pmatrix} \Sigma_{ab}^{\star \, 11}(\omega) \ \Sigma_{ab}^{\star \, 12}(\omega) \\ \\ \Sigma_{ab}^{\star \, 21}(\omega) \ \Sigma_{ab}^{\star \, 22}(\omega) \end{pmatrix}$$

$$\mathbf{\Sigma}^{\star}_{ab}(\omega) \equiv \mathbf{\Sigma}_{ab}(\omega) - \mathbf{U}_{ab}$$

1st & 2nd order diagrams

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

 $\Sigma_{ab}^{12\,(1)} = c$ $\Sigma_{ab}^{11\,(1)} = \qquad \stackrel{a}{\bullet} - - - \stackrel{c}{-d} \qquad \qquad \downarrow \omega'$

***** Gorkov equations

eigenvalue problem

$$\sum_{b} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$$

 $\mathcal{U}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a^\dagger | \Psi_0 \rangle$ $\mathcal{V}_a^{k*} \equiv \langle \Psi_k | a_a | \Psi_0 \rangle$

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

$$\sum_{b} \left(\begin{array}{cc} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{array} \right) \bigg|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$$

Energy *independent* eigenvalue problem

with the normalization condition

$$\sum_{a} \left[\left| \mathcal{U}_{a}^{k} \right|^{2} + \left| \mathcal{V}_{a}^{k} \right|^{2} \right] + \sum_{k_{1}k_{2}k_{3}} \left[\left| \mathcal{W}_{k}^{k_{1}k_{2}k_{3}} \right|^{2} + \left| \mathcal{Z}_{k}^{k_{1}k_{2}k_{3}} \right|^{2} \right] = 1$$

Calcium isotopic chain

◆ *Ab initio* calculation of the whole Ca chain with NN + 3N forces

- → 3NF bring energies close to experiment
- → Induced 3NF and full 3NF investigated
- --- Original 3NF correct the energy curvature

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

[Somà et al. in preparation]

Two-neutron separation energies

Neutron-rich extremes of the nuclear chart

- --- Good agreement with measured S2n
- Towards a quantitative *ab initio* description of the medium-mass region

• Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

				(theo.)	(ex	pt.)	(ex	pt.)
Isotopes	lj^{π}	Sn(MeV)	ΔS (MeV)	SF(LB-SM)	SF(JLM + HF)	Rs(JLM + HF)	SF(CH89)	<i>Rs</i> (CH89)
³⁴ Ar	$s1/2^{+}$	17.07	12.41	1.31	0.85 ± 0.09	0.65 ± 0.07	1.10 ± 0.11	0.84 ± 0.08
³⁶ Ar	$d3/2^{+}$	15.25	6.75	2.10	1.60 ± 0.16	0.76 ± 0.08	2.29 ± 0.23	1.09 ± 0.11
⁴⁶ Ar	$f7/2^{-}$	8.07	-10.03	5.16	3.93 ± 0.39	0.76 ± 0.08	5.29 ± 0.53	1.02 ± 0.10

[Lee et al. 2010]

	Sn (MeV)	ΔS (MeV)	SF		
³⁴ Ar ³⁶ Ar ⁴⁶ Ar	33.0 27.7 16.0	18.6 7.5 -22.3	1.46 1.46 5.88	Gorkov GF NN	$(\Delta S = Sn - Sp)$
				-	
³⁴ Ar	22.4	15.5	1.56		
³⁶ Ar	15.3	7.2	1.54	Gorkov GF NN + 3N	
⁴⁶ Ar	6.5	-15.7	6.64		

Knockout & transfer experiments

Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

Conclusions

• Self-Consistent Green's Functions (SCGF), is a microscopic *ab-initio* method applicable to medium mass nuclei. *Greatest advantage* is the link to several (experimentally accessible) information.

• Addition of three nucleon forces (3NF):

 \rightarrow Effective N+NN hamiltonian with int. irred. diagrams

 \rightarrow Needed to properly predict BEs and dripline physics

 \rightarrow First ab-initio study of ^AN and ^AF chains

• Proof of principle calculations Gorgov theory are successful at 2nd order. This de facto show opens a whole new path:

→Open-shell nuclei (<u>many, not</u> previously approachable otherwise!)

Reactions at driplines.

OUP Stope. OUP OF YOU FOR I ENTION! structure of next generation EDF.

• Three-point mass differences

Inversion of odd-even staggering

Second order and 3NF necessary to invert the staggering

