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Outilne: 

•  Concept of spectral functions 

•  Dyson formalism for finite (closed-shell) nuclei 
•  Inclusion of 3NF and fluorine/nitrogen driplines 
•  Gorkov-GF for open shells 
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Towards a unified description of nuclei  
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One-body Green’s function (or propagator) describes the motion of quasi- particles 
and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer A7E-L.H/M!
K+0LP%0C: 

Green’s functions in many-body theory 
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15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉
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0 ) + iη

+
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k
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†
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A−1
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k |cα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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Calculating the spectral function: 
 

 FRPA, ADC(3), and the like… 
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Faddeev-RPA in two words… 
Faddeev-RPA:Self-energy  

(optical potential):

•  A complete expansion requires all types of particle-vibration coupling: 
#     gII($) ! pairing effects, two-nucleon transfer 
#  !(ph)($) ! collective motion, using RPA or beyond 
#  Pauli exchange effects 
 

•  The Self-energy %$($)　yields both single-particle states and scattering 
 

•  Finite nuclei:! require high-performance computing 

R(2p1h) %$($) = R(2h1p) 
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Accuracy of FRPA – simple atoms/molecules 

[M. Degroote, D. van Neck, C. B. Phys. Rev. A 83, 042517 (2011); 85, 012501 (2012)] 
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FTDA FTDAc FRPA FRPAc CCSD(T) FCI Expt.

H2

E0 −1.170 −1.161 −1.170 −1.161 −1.164 −1.164 −1.175
rH−H 0.769 0.757 0.770 0.757 0.761 0.741

I 16.16 16.03 16.16 16.03 16.12 16.08
BeH2

E0 −15.855 −15.831 −15.856 −15.832 −15.835 −15.836 -
rBe−H 1.374 1.337 1.383 1.337 1.339 1.340

I 11.89 11.78 11.84 11.76 11.89 -
HCl

E0 −460.295 −460.256 −460.293 −460.255 −460.254 -
rH−Cl 1.314 1.297 1.314 1.293 1.290 1.275

I 12.44 12.24 12.44 12.24 12.26 -
HF

E0 −100.175 −100.224 −100.173 −100.228 −100.228 −100.231 -
rH−F 0.904 0.916 0.897 0.913 0.920 0.917

I 15.70 15.70 15.56 15.54 15.42 16.12
H2O

E0 −76.248 −76.240 −76.243 −76.236 −76.241 -
rH−O 0.986 0.964 0.981 0.962 0.967 0.958

ΛO−H−O 101 102 100 102 102 104
I 12.07 12.15 12.25 12.21 11.94 12.61

Table 4.6: FRPA results for a set of small molecules with a correlation energy up to 200 mH in a cc-pVDZ basis set. The ground-state

energy E0 is given in Hartree, the ionization energy I in electronvolt, equilibrium bond distances are in Angstrom and the

equilibrium angles in degrees. FRPA and FTDA refer to the calculations after the first iteration, while FRPAc and FTDAc

refer to the calculations where consistency at the Hartree-Fock level was applied. The calculated data are compared to the

Coupled Cluster method at the level of CCSD(T) and to experimental data or exact calculations taken from Ref. [CCC10].

The FCI energies were calculated at the FRPAc geometry.
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binding  
 energies (atoms) 

binding, eq. bond distances,   ! 
ionization energies (molecules) 

98-99% of correlation energy 
is recovered 

 
< 1% of tot. binding energy!

ACCURACY OF THE FADDEEV RANDOM PHASE . . . PHYSICAL REVIEW A 85, 012501 (2012)

TABLE II. Convergence of total energies and IEs (in hartrees) in the FRPA approach. Calc. indicates energies calculated using double
(X = D) to quintuple (X = 5) valence orbits basis sets. Extrap. indicates results extrapolated from two consecutive sets using Eq. (7). The
Be atom was calculated with the cc-pVXZ bases, while Ne, Mg, and Ar were done using cc-pCVXZ. The experimental values are from
Refs. [57–59,62].

cc-p(C)VDZ cc-p(C)VTZ cc-p(C)VQZ cc-p(C)V5Z Experiment

Etot Be calc. −14.6084 −14.6150 −14.6310 −14.6371 −14.6674
extrap. −14.6178 −14.6427 −14.6436

Ne calc. −128.7210 −128.8643 −128.9079 −128.9226 −128.9383
extrap. −128.9246 −128.9397 −128.9381

Mg calc. −199.8147 −199.9507 −200.0033 −200.0271 −200.054
extrap. −200.0080 −200.0417 −200.0519

IE Ar (3p) calc. 0.5623 0.5695 0.5751 0.5770 0.579
extrap. 0.5725 0.5792 0.5788

Ar (3s) calc. 1.0985 1.0616 1.0599 1.0622 1.075
extrap. 1.0461 1.0586 1.0646

where X is the cardinal number of the basis. This relation is
known to give proper extrapolations for correlation energies
[1]. Table II gives some examples of the calculated binding
energies for all basis sizes and shows the convergence of the
extrapolated results. In the smallest systems, up to Ne, we find
changes of less than 2 mH between the last two extrapolations
(X = T ,Q and X = Q,5). This number can be taken as a
measure of the uncertainty in reaching the basis-set limit. For
the larger atoms Mg is the one that converges more slowly, with
a difference of 10 mH (we found 7 mH for Ar). Calculations
with X = 6 are beyond our present computational capabilities.
However, given the fast convergence with increasing cardinal
number, it appears safe to assume an uncertainty of !5 mH
for Mg and Ar.

In general, IEs and EAs tend to converge faster because they
represent differences of total energies between the N -electron
ground state and the excited states of (N ± 1) electrons. Inac-
curacies in the correlation energies are similar and therefore
could cancel each other to a large extent. Equation (7) is
preserved when taking differences of correlation energies that
obey the same trend, and therefore one may expect that a
similar behavior applies to IEs for large basis sets. However,
this is not always guaranteed, especially in cases where
shake-up configurations are important. For smaller bases these
contributions are less stable with respect to changing basis
set and can affect IEs differently. The possible behaviors are

displayed in Table II for the calculated IEs of Ar. The 3p
orbit has a strong one-hole character and converges smoothly.
Here the difference of only 0.4 mH between the last two
extrapolations indicates that a convergence as X−3 effectively
takes place. We obtained similar trends for the other cases.
The only remarkable exception is the 3s hole in Ar, which
has a large admixture of 2h1p configurations. The calculated
IE shows an oscillatory behavior; however, a monotonic
convergence could still happen for larger bases once shake-up
contributions have stabilized. In Sec. III B, we will apply
Eq. (7) also to extrapolate ionization energies. We estimate
an error up to 2 mH for the larger atoms and <1 mH for the
smaller ones.

B. Ground states and ionization energies of simple atoms

Table III shows the ground-state energies extrapolated from
X = Q,5 for both Green’s function and CCSD methods. These
are compared to the corresponding Hartree-Fock results and
the experiment. The empirical values are from Refs. [57–59]
and have been corrected by subtracting relativistic effects.
The CCSD results for He and Be2+ are equivalent to FCI.
Note that the extrapolated value based on X = Q and X = 5
is not yet fully converged at the submillihartree level and
lies slightly below the basis-set limit. We see that FRPA misses
1 mH, or 2%, of the correlation energy of He. In larger systems

TABLE III. Hartree-Fock, FTDA, FRPA, and CCSD total energies (in hartrees) extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis
sets. He, Be2+, and Be were calculated with the cc-pVXZ bases, while cc-pCVXZ bases were used for the remaining atoms. The deviations
from the experiment are indicated in parentheses (in mhartrees). The experimental energies are from Refs. [57–59]. The rms errors in parentheses
are calculated by neglecting the Be results.

Hartree-Fock FTDA FRPA CCSD Experiment

He −2.8617(+42.0) −2.9028(+0.9) −2.9029(+0.8) −2.9039(−0.2) −2.9037
Be2+ −13.6117(+43.9) −13.6559(−0.3) −13.6559(−0.3) −13.6561(−0.5) −13.6556
Be −14.5731(+94.3) −14.6438(+23.6) −14.6436(+23.8) −14.6522(+15.2) −14.6674
Ne −128.5505(+387.8) −128.9343(+4.0) −128.9381(+0.2) −128.9353(+3.0) −128.9383
Mg2+ −198.837(+444) −199.226(−5) −199.228(−7) −199.225(−4) −199.221
Mg −199.616(+438) −200.048(+6) −200.052(+2) −200.050(+4) −200.054
Ar −526.820(+724) −527.543(+1) −527.548(−4) −527.536(+8) −527.544
σrms [mH] 392 9.5(3.6) 9.5(3.4) 6.9(4.2)
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TABLE IV. Ionization energies obtained with Hartree-Fock, second-order perturbation theory for the self-energy (plus the CHF term),
FTDA, and the full Faddeev RPA (in hartrees). All results are extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis sets (see Table III).
The deviations from the experiment (indicated in parentheses) and the rms errors are given in mhartrees. The experimental energies are from
Refs. [62–64].

Second Experiment
Hartree-Fock order FTDA FRPA [63,64]

He 1s 0.918(+14) 0.9012(−2.5) 0.9025(−1.2) 0.9008(−2.9) 0.9037
Be2+ 1s 5.6672(+116) 5.6542(−1.4) 5.6554(−0.2) 5.6551(−0.5) 5.6556
Be 2s 0.3093(−34) 0.3187(−23.9) 0.3237(−18.9) 0.3224(−20.2) 0.3426

1s 4.733(+200) 4.5892(+56) 4.5439(+11) 4.5405(+8) 4.533
Ne 2p 0.852(+57) 0.752(−41) 0.8101(+17) 0.8037(+11) 0.793

2s 1.931(+149) 1.750(−39) 1.8057(+24) 1.7967(+15) 1.782
Mg2+ 2p 3.0068(+56.9) 2.9217(−28.2) 2.9572(+7.3) 2.9537(+3.8) 2.9499

2s 4.4827 4.3283 4.3632 4.3589
Mg 3s 0.253(−28) 0.267(−14) 0.272(−9) 0.280(−1) 0.281

2p 2.282(+162) 2.117(−3) 2.141(+21) 2.137(+17) 2.12
Ar 3p 0.591(+12) 0.563(−16) 0.581(+2) 0.579(≈ 0) 0.579

3s 1.277(+202) 1.111(+36) 1.087(+12) 1.065(−10) 1.075
3s 1.840 1.578 1.544

σrms [mH] 81.4 29.3 13.7 10.6

FRPA explains at least 99% of the correlation energies, and
all calculations, including CCSD, agree with the experiment
within the uncertainty expected from basis extrapolation. For
Z ! 10, the inclusion of RPA correlations predicts about 5 mH
more binding than the corresponding FTDA. The atom of Be
is the only exception to this trend, as already noted above. In
this case the 9 mH difference between FRPA and CCSD is
seen also in the basis limit. Based on the agreement between
FCI and CCSD in Table I, the remaining discrepancy with the
experiment (≈15 mH) may be due to the basis set employed,
which is probably not capable of accommodating the relevant
correlation effects. We have attempted FRPA calculations with
the aug-cc-pVXZ bases to allow for a better description of
the valence orbits but without any appreciable change in the
results.

The Ne atom was also computed in the FRPA approach by
using a Hartree-Fock basis with a discretized continuum [36].
The basis set was chosen to be as large as possible to approach
the basis-set limit for IEs and EAs but was not optimized for
treating core orbits. The total binding energy obtained was
128.888 H, away from both the basis-set limit of Table III and
the experiment.

Ionization energies are shown in Table IV, together with
the predictions from Hartree-Fock theory and the second-order
self-energy [obtained by retaining only the first two diagrams
of Fig. 1(b)]. Second-order corrections account for a large part
of correlations but still lead to sizable errors. The additional
correlations included in the present calculations appear to
reduce this error substantially. The FTDA [i.e. ADC(3)]
results give a measure of the importance of a treatment
that is consistent with at least third-order perturbation theory
[13]. Corrections are particularly large for states with higher
ionization energies, where the density of 2h1p states is
increased. Since configuration mixing among these states
is not introduced by strict second-order perturbation theory,
calculations at least at the level of FTDA are required in these
cases. Configuration mixing among the 2h1p states reduces

the errors in the 1s state in Be by a factor of 5. Another
effect is the fragmentation of the 3s orbit of Ar. Second-order
calculations predict this as a quasiparticle state 36 mH away
from the empirical energy and carrying 0.81 of the total orbit’s
intensity. A small satellite state with relative intensity of 0.10
is calculated at larger separation energies. The mixing with
2h1p configurations corrects the energies of both peaks and
redistributes their strengths more correctly. For the FRPA
calculation the peak at 1.065 H has intensity of 0.61, close
to the experimental values (peak at 1.075 H with intensity
0.55 [62]). The second peak is obtained at 1.544 H and carries
the remaining strength of the original quasiparticle.

Adding the effects of RPA excitations has a larger impact
on ionization than on correlation energies. Almost all the
calculated IEs shift closer to the experimental values by a
few millihartree. The only exceptions are the two-electron He
atom, where the RPA approach tends to overestimate correla-
tions, and the first ionization of Be, where soft excitations tend
to invalidate the RPA. In general, the rms error for the valence
orbits of Table IV decreases from 13.7 to 10.6 mH, passing
from FTDA to FRPA.

The FRPA first and second IEs of the Ne atom computed
using the discretized continuum basis of Ref. [36] are 0.801
and 1.795 H. These are in good agreement with the extrapo-
lations of Table IV and give us further confidence in applying
Eq. (7) also for quasiparticle states.

IV. CONCLUSIONS AND DISCUSSION

We have performed microscopic calculations of total and
ionization energies in order to assess the accuracy of the Fad-
deev RPA approach for light atoms. The FRPA is an expansion
of the many-body self-energy that makes explicit the coupling
between particles and collective excitations arising from
interacting electrons and holes. This formalism completely
includes the ADC(3) theory and retains all contributions from
perturbation theory up to third order, which is crucial for a
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Scaling – intermediate state representation methods 

[A. B. Trofimov and J. Schirmer, J. Chem. Phys. 123, 144115 (2005) 
      F. Mertins   and J. Schirmer, Phys. Rev. A53, B?;<!(1996) ] pressions for the ionic !N±1" electron states. The derivation

follows closely the procedure described in Ref. 53. The re-
sults are collected in Appendix B.

E. Comparison with coupled-cluster methods

As the nD-ADC schemes, the CC approach to electronic
ionization25,26,31 can be viewed as a specific intermediate-
state representations of the shifted Hamiltonian Ĥ−E0. In the
CC case two different sets of intermediate states are em-
ployed: the !N−1"-electronic excited states of the form
#!! J

N−1$= ĈJeT̂#"0$ and the corresponding biorthogonal states
%!̆I

N−1#= %"0#ĈI
†e−T̂. Here ĈJ are operators defined by Eq. !6"

and eT̂#"0$ is the standard CC parameterization of the
N-electronic ground-state #!0

N$ using the cluster operator of
the form T! =T!1+T!2+¯. The secular matrix of the resulting
biorthogonal coupled-cluster representation,

MIJ = %!̆I#Ĥ − E0#!! J$ , !23"

is non-Hermitian giving rise to a right- and left- hand eigen-
value problem,

MX = X!, Y†M = !Y†, Y†X = 1. !24"

The hierarchy of CC approximation schemes is obtained by
extending the !N−1"-electronic configuration space to S, SD,
SDT, …, configuration classes !here also denoted as 1h, 1p
-2h, 2p-3h , . . ., respectively" and by introducing approxima-
tions to the CC amplitudes !for the N-electronic ground state"
and the secular matrix elements.

The CCSD approximation employs an explicit configu-
ration space of 1h and 1p-2h configurations and the SD clus-
ter amplitudes !Table I". This yields a consistent second-
order treatment of single-hole states and a first-order
treatment of 1p-2h states. The numerical cost of CCSD in-
volving the construction and solution of Eq. !24" is propor-
tional to n5. On the other hand, the solution of the CCSD
ground-state equations for the cluster amplitudes scales as
n6, so that the overall cost of the method is proportional to
n6. A comparable theoretical description of the 1h and 1p
-2h states is yielded by the nD-ADC!2"-E scheme for which
the computational cost is proportional to n5. The strict
second-order nD-ADC!2" scheme, treating the 1p-2h states
through zeroth order, scales even more favorably as n4.

As follows from the theoretical analysis in Ref. 28, the
CC configuration space must comprise the 2p-3h configura-
tions in order to have third-order consistency for single-hole
states. This is the case in the CCSDT method. The method
scales as n7 in the treatment of Eq. !24" and as n8 in the
solution of the ground-state CCSDT problem. The resulting
CCSDT computational costs are therefore proportional to n8.
The third-order consistency of the CCSDT model !for single-
hole states" is shared by the less expensive nD-ADC!3"
method, which scales only as n5. As a consequence of the
compactness property,28 the configuration space of the nD-
ADC!3" scheme does not include the 2p-3h configurations.
The explicit consideration of the 2p-3h configurations in the
CCSDT allows for a better, namely, consistent second-order
treatment of the 1p-2h states, which at the nD-ADC!3" level
are treated consistently through first order only. In view of
the importance of the admixture of 1p-2h configurations in
the single-hole states, the CCSDT results will, in general, be
more accurate than those of the nD-ADC!3" treatment.

III. COMPUTATIONS

The present prototypical nD-ADC!3" implementation
follows the conventional strategy in which one first com-
putes and stores the nonvanishing secular matrix elements
and then, in a second step, performs the !iterative" diagonal-
ization. This procedure has still an unfavorable scaling, but it
allows for a straightforward and utmost error-free implemen-
tation of the method, which was our main objective at the
present stage. The development of a code optimized with
respect to computational efficiency and exploiting the full n5

scaling potential of the nD-ADC!3" method will be the next
logical step. Here, the key point is a direct diagonalization
procedure in which !parts of" the secular matrix are recom-
puted as needed in performing the matrix-vector products,

ȲIn = &
J

!K + C"IJYJn, !25"

required in the iterative solution of Eq. !11". As one can
easily check, all such products in the nD-ADC!3" scheme
can be broken down to utmost n5 steps by forming appropri-
ate intermediates !see Ref. 30 for a more detailed discussion
in the case of an ADC secular matrix and Ref. 56 for similar
techniques in the context of CC methods". The scaling prop-
erties of the nD-ADC schemes in Table I refer to such a
direct diagonalization.

The explicit expressions for the nD-ADC!3" secular ma-
trix elements in Ref. 24 have been given in spin-orbital form.
For program implementation, the spin-free working equa-
tions for the final-state spin values S=1/2 and 3/2 have been
generated. Simultaneously, summations over spin variables
have been performed. More details of the procedure used at
this step can be found in Ref. 30. The present nD-ADC!3"
code was interfaced to the GAMESS !US" !Ref. 57" and MOL-

CAS !Refs. 58 and 59" program packages.
For comparison with the experimental data, the nD-ADC

calculations were performed for the following systems:
C2H4, CO, CS, F2, H2CO, H2O, HF, N2, and Ne. Experimen-
tal equilibrium ground-state geometrical parameters were

TABLE I. Characteristics of nD-ADC and CC methods !explicit configura-
tion space, perturbation-theoretical consistency for ionization energies !#",
and ground-state !E0" energies scaling".

Method
Configuration

space

#

E0 Scalinga1h 2h-1p

ADC!2" 1h, 2h -1p 2 0 2 n4

ADC!2"-E 1h, 2h-1p 2 1 2 n5

CCSD 1h, 2h-1p 2 1 3 n6

ADC!3" 1h, 2h-1p 3 1 3 n5

CCSDT 1h, 2h-1p, 3h -2p 3 2 4 n8

aFor the CC schemes the scaling refers to the ground-state calculations,
which is the computationally most expensive step !see text for details".
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The radial functions Y (r) and T (r) are the Yukawa and
tensor functions, respectively, the tensor operator is defined
as Sij = 3(σ i · r̂ ij )(σ j · r̂ ij ) − σ i · σ j , where r̂ ij is the unit
vector of the distance between particles i and j . To determine
the overall strength of the TBF and the relative strength
between the two terms two parameters are present (A < 0
and U > 0), to be tuned to reproduce the saturation properties
of symmetric nuclear matter. Since different NN potentials
lead to different saturation curves one should expect these
parameters to depend on the particular choice of the two-body
force.

The three-body interaction depends on the spatial, spin,
and isospin coordinates of the three nucleons, and in such
a form cannot be used in the calculations. We then need to
introduce some approximation and derive an effective two-
particle potential. This can be done by averaging the action of
the third nucleon, resulting in a mean field felt by the other
two:

V 3
eff(q, q ′) =

∑

στ

∫
d3k

(2π )3
n(k) V 3(k, q, q ′), (11)

where V 3(k, q, q ′) is the Fourier transformed form of Eq. (7)
and

n(k) =
∫

dω

2π
G<(k,ω) (12)

is the particle momentum distribution. The sum over spin
and isospin degrees of freedom just reminds us that V 3 has
a nontrivial structure in the σ and τ spaces which has to be
taken care of (we did not write explicitly spin and isospin
indices).

This average has to be performed for each of the three
nucleons and over all their possible permutations, resulting in
nine different terms. One has to pay particular attention to the
spin-isospin and tensor dependence of the various averages
and finally get, for each of the nine permutations, an effective
potential of the form

V 3
eff(q,q ′) = V R

s (q,q ′) + V 2π
s (q,q ′) + V 2π

στ (q, q ′)σ · σ ′τ · τ ′

+V 2π
Sτ (q, q ′)S(q, q ′) τ · τ ′, (13)

where V R
s , V 2π

s , V 2π
στ , and V 2π

Sτ are now scalar functions.
Once we have obtained V 3

eff (density dependent) we add it
to the two-body potential in Eq. (3)

V −→ V ′ = V + V 3
eff, (14)

and perform the T -matrix iteration.

IV. BINDING ENERGY AND SINGLE PARTICLE
PROPERTIES

We perform calculations with two different parametriza-
tions of the NN interaction, the CD-Bonn [49], and
the Nijmegen [50] potentials. For both of them we compute
the energy per particle directly from the expectation value
of the interaction Hamiltonian, for symmetric and for pure
neutron matter, with and without TBF. In the case of three-body
forces we have tuned the parameters A and U in Eqs. (8) and
(10) in the symmetric case in order to reproduce the saturation
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FIG. 1. (Color online) Energy per particle in symmetric nuclear
matter as a function of density (in units of the nuclear saturation
density ρ0 = 0.16 fm−3). T -matrix calculations are compared to the
variational [2] and BHF [9] approaches, both including TBF.

density ρ0 and binding energy E0. Since the averaging over
the third nucleon in TBF terms represents a rather crude
approximation, the resulting numerical values of the parame-
ters of the TBF are different than in other approaches.

A. Symmetric nuclear matter

The energy per particle as a function of density for sym-
metric nuclear matter is shown in Fig. 1. The calculations with
only two-body forces fail to reproduce the correct saturation
behavior, predicting a saturation density ρ = 1.47 ρ0 in the
case of the Nijmegen potential and ρ = 1.79 ρ0 for CD-Bonn.
After the inclusion of three-nucleon interactions the situation
is significantly improved, with both curves saturating around
the phenomenological value ρ0 = 0.16 fm−3 and yielding a
correct binding energy1 (Nijmegen EB = −16.4 MeV and
CD-Bonn EB = −16.3 MeV).

1We estimate the numerical error on all the energy calculations to
be ±0.5 MeV, for details see [26].
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FIG. 2. (Color online) Spectral function at zero momentum for
CD-Bonn interaction and symmetric nuclear matter, at ρ0, 2ρ0, and
3ρ0.
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 

(3NF arise naturally at N2LO)!

Need at LEAST 3NF!!! 
(“cannot” do RNB physics without…)!

Single particle spectrum at Efermi:!
!

Saturation of nuclear matter:!

[T. Otsuka et al.,!
Phys Rev. Lett  105, !
32501 (2010)]!

[V. Somà, Phys Rev. C 78,!
 054003 (2008))]!



Dyson equation 
! Propagators solves the Dyson equations 

! (Hole) single particle spectral function 

Sh
ab(ω) =

1

π
Im gab(ω) =

�

k

�ΨA−1
k |cb|ΨA

0 ��ΨA
0 |c†a|ΨA−1

k � δ(ω − (EA
0 − EA−1

k ))

gab(ω) = g0
ab(ω) +

�

cd

g0
ac(ω) Σcd(ω) gdb(ω)

1

2

�

ab

� EF

−∞
(tab + δabω)Sh

ab(ω) dω = �T � + �V NN� +
3

2
�V NNN�

�V NNN� ≈ 1

6

! Koltun sum rule (with NNN interactions): 



Inclusion of NNN forces  

! NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction!

Correction to  
non-contracted  
2-Body interaction!

pure 3-Body 
contribution!
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4
_! gII (!)#

 A. Carbone, A. Cipollone, CB, A. Rios, A Polls!

- Contractions are with fully correlated density 
 matrices  (BEYOND a normal ordering…) 



Inclusion of NNN forces  

! NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction!

Correction to  
non-contracted  
2-Body interaction!

pure 3-body 
contribution (small)!

1
2
_!

 A. Carbone, A. Cipollone, CB, A. Rios, A Polls!

- Contractions are with fully correlated density 
 matrices  (BEYOND a normal ordering…) 
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eV
)

FIG. 6. (Color online) (Data points) CCSD results (taken at the
h̄ω minima) for the binding energy of 4He with 3NFs as a function of
the number of oscillator shells. (Dashed lines) Exponential fit to the
data and asymptote of the fit. (Full line) Exact result.

due to the sharp cutoff in Vlow k . This might be improved by
using low-momentum interactions with smooth cutoffs [58].
Using the minima of the CCSD results with 3NFs, we make
an exponential fit of the form E(N ) = E∞ + a exp (−bN ) to
the data points. The result is shown in Fig. 6. The extrapolated
infinite model space value is E∞ = −28.09 MeV, which is
very close to the exact result E = −28.20(5) MeV.

It is interesting to analyze the different contributions "E
to the binding energy E. The individual contributions are
given in Fig. 7 for a model space of N = 4 oscillator shells
and h̄ω = 20 MeV. The main contribution stems from the
low-momentum NN interaction. The contributions from 3NFs
account only for about 10% of the total binding energy. This

(1) (2) (3) (4) (5)10
-4

10
-3

10
-2

10
-1

10
0

| ∆
E 

/ E
C

C
SD

 |

2-body only

0-body 3NF

1-body 3NF

2-body 3NF

residual 3NF

estimated triples corrections

FIG. 7. (Color online) Relative contributions |"E/E| to the
binding energy of 4He at the CCSD level. The different points denote
the contributions from (1) low-momentum NN interactions, (2) the
vacuum expectation value of the 3NF, (3) the normal-ordered one-
body Hamiltonian due to the 3NF, (4) the normal-ordered two-body
Hamiltonian due to the 3NF, and (5) the residual 3NFs. The dotted
line estimates the corrections due to omitted three-particle/three-hole
clusters.

is consistent with the chiral EFT power-counting estimate
〈V3N〉 ∼ (Q/#χ )3〈Vlow k〉 ≈ 0.1〈Vlow k〉 [50] (see also Table I
in Ref. [52]). The second, third, and fourth largest contribution
are due to the first, second, and third term on the right-hand
side of Eq. (2). These are the density-dependent zero-, one-,
and two-body terms, which resulted from the normal ordering
of the three-body Hamiltonian in coupled-cluster theory.
The contributions from the residual three-body Hamiltonian,
Eq. (3), are very small and are represented by the last point
in Fig. 7. Recall that the residual 3NF contributes to the
energy directly through Eq. (12) and indirectly through a
modification of the cluster amplitudes via Eqs. (15) and (16).
Apparently, both contributions are very small. In addition and
independent of the result that low-momentum 3N interactions
are perturbative for cutoffs # <∼ 2 fm−1 [50], we find here that
the contributions of 3NFs decrease rapidly with increasing
rank of the normal-ordered terms.

The small contribution from the residual three-body Hamil-
tonian is the most important result of our study. It suggests that
one can neglect the residual terms of the 3NF when computing
binding energies of light nuclei. This is not unexpected
and has been anticipated in several earlier studies. Mihaila
and Heisenberg [19] computed the charge form factor for
16O within coupled-cluster theory and found a very good
agreement with experimental data by considering only the
density-dependent one- and two-body parts of 3NFs. Similarly,
Navrátil and Ormand [59] observed in no-core shell-model
calculations that density-dependent two-body terms are the
most significant contributions of effective three-body forces.
Our finding also support Zuker’s [60] idea that monopole
corrections to valence-shell interactions are due to the density-
dependent terms of 3NFs. Note finally that the modeling of
three-body interactions in terms of density-dependent two-
body Hamiltonians has a long history, see, e.g., Ref. [61].
Note that all these examples and the present study employ
sufficiently “soft” or “effective” interactions. We expect
that the smallness of residual 3NFs is a property of such
interactions. We will study the cutoff dependence of this
finding in future work. Finally, the smallness of residual
3NFs is also encouraging for future improved nuclear matter
calculations, which currently include low-momentum 3NFs
through density-dependent NN interactions [51].

The smallness of the residual three-body terms is also for
coupled-cluster calculations a most welcome result. This is
attractive for two reasons. First, the inclusion of the residual
three-nucleon Hamiltonian, as described in subsection II B,
is computationally expensive. It exceeds the cost of a CCSD
calculation for two-body Hamiltonians by a factor of order
O(nu) + O(n2

o) and is therefore significant for a large number
of unoccupied orbitals and/or large number of nucleons.
Second, the omission of the residual three-body Hamiltonian
will allow us to treat 3NFs within the standard coupled-cluster
theory developed for two-body Hamiltonians (after normal
ordering). As a result, we can take the CCSD calculations
one step further and include perturbative corrections of three-
particle/three-hole clusters [62].

Let us neglect the residual 3NF terms of Eq. (3) and
perform CCSD(T) calculations for the binding energy of 4He.
The approximate inclusion of three-particle/three-hole clusters

034302-9

[PhyRevC 76, 
034302 (2007)]!



Inclusion of NNN forces  

! NNN forces can enter diagrams in three different ways: 
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 A. Carbone, A. Cipollone, CB, A. Rios, A Polls!

- Contractions are with fully correlated density matrices     
   (BEYOND a normal ordering…) 

+!

+! +!&!

&!

&!

! Define new 1- and 2-body interactions and  
 use only interaction-irreducible diagrams!



 A. Cipollone, CB, P. Navrátil!

Σ∗ +
1
2

+=
V

W

= +Ṽ V W

(ph)Π

Π(ph)

gII (pp/hh)

+

Ṽ

Ṽ

NNN forces in FRPA/FTDA formalism  

Use:        as 2-body potential in all V-irred.  
        RPA/TDA summations!

+=
Π

Π(ph)

(ph)

Ṽ

+−=g IIg
(pp/hh)II

(pp/hh)

Ṽ

Then:!

…approximations and some improvements still being 
assessed – this is all work in progress!
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Error estimates for the oxygen chain 
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-  Odd-even isitopes from nucleon addition (A+1) and removal (A-1): 

 
-  C.O.M. correction important 13O: 1.65 ! 0.19 MeV,   15O 1.03!0.02MeV 

-  discrepancy up to 400 keV (< 1% BE)! 

 A. Cipollone, CB, P. Navrátil, arXiv:1303.4900 [nucl-th] 

2

where the integration contour C ↑ is taken on the upper half of
the imaginary plane.

We start our calculations with the intrinsic Hamiltonian
H(A) = H − Tc.m.(A) = U(A) + V(A) + W in which the ki-
netic energy of the center of mass (c.o.m.) has been subtracted
and we put in evidence the dependence on the number of nu-
cleons A. The terms U, V and W collect all the one-, two-
and three-nucleon contributions, respectively. Based on this,
we define system dependent one- and two-body effective in-
teractions obtained by contraction with the correlated density
matrix, Eq. (1),

Ũαβ = Uαβ + Vαγ, βδ ρδγ +
1
2

Wαγδ, βµν ρµγ ρνδ , (3)

Ṽαβ,γδ = Vαβ,γδ + Wαβµ,γδν ρνµ . (4)

All matrix elements are properly antisymmetrized and sum-
mation over repeated indices are implied here and in the fol-
lowing. The resulting Hamiltonian, �H = �U + �V + W, can be
proved to lead to the same Green function (1) as the original
Hamiltonian with the caveat that only interaction-irreducible

terms are retained in the diagrammatic expansion [24]1. Equa-
tions (3) and (4) generalize the idea of normal ordering of the
Hamiltonian to fully correlated densities. In this work we keep
only the �U and �V terms and discard diagrams with explicit
interaction-irreducible 3NFs. The error associated with this
truncation has been seen to be negligible in Refs. [25, 26] 2.
The single particle propagator gαβ(ω) can then be calculated
by exploiting the effective one- and two- body interactions
with the already available two-body formalisms.

We first solve the spherical Hartree-Fock (HF) equations
for the full Hamiltonian within the given model space. The
resulting propagator, g

HF

αβ (ω), is then used as a reference state
to calculate the energy-dependent part of the self-energy. We
employ ADC(3) method [21, 22] and write the self-energy as

Σ�αβ(ω) =Σ∞αβ + Σ
�
αβ(ω) (5)

=Ũαβ +Cαn

�
1

ω −M

�

n n�
C
†
n�β + Dαk

�
1

ω −N

�

k k�
D
†
k�β ,

where M (N) are interaction matrices in the 2p1h (2h1p) space
and C (D) are the corresponding coupling strengths to the sin-
gle particle states. In the ADC(3), these matrices are con-
structed to guarantee that all diagrams up to third order are in-
cluded in Eq.(5). In general, the the ADC(n) approach defines
a hierarchy of truncation schemes of Eq. (5) for increasing or-
der n that guides systematic improvements of the method. The
correlated propagator gαβ(ω) is finally obtained by solving the
Dyson equation,

gαβ(ω) = g
HF

αβ (ω) + g
HF

αγ (ω)Σ�γδ(ω)gδβ(ω) , (6)

1 A diagram is said to be interaction-reducible if it can be factorized in two
lower-order diagrams by cutting an interaction vertex or, equivalently, if it
is connected and there exists a group of lines (interacting or not) that leave
an interaction vertex and eventually all return to it.

2 This would be the analogous to the NO2B approximation of Ref. [26] but,
here, not tight to the choice of any reference state.

which is diagonalized using a Lanczos algorithm as explained
extensively in [27, 28]. Note that we employ the sc0 approxi-
mation of Refs. [15, 28] where only the Σ�αβ(ω) contribution of
Eq. (5) depends on the reference states g

HF

αβ (ω). This implies
the iterative solutions of Eq. (6) to evaluate Σ∞αβ=Ũαβ − U

HF

αβ
in terms of the final correlated density matrix, Eq. (3).

In the presence of 3NFs, the ground state energy can still
be inferred from the Koltun sum rule (SR) that now acquires
a correction:

E
A

0 =
�

α β

1
4πi

�

C↑
dω
�
Uαβ + ωδαβ

�
gβα(ω) − 1

2
�ΨA

0 |W |ΨA

0 � .

(7)
Eq. (7)–based on the exact propagator–is still an exact equa-
tion. However, it requires to evaluate the expectation value of
the 3NF part of the Hamiltonian �ΨA

0 |W |ΨA

0 �, with an accuracy
comparable to the many-body approximation in use. We cal-
culate this correction at first order in W using fully correlated
propagators,

�W3ρ� = 1
6

Wαβγ, µνξ ρµα ρνβ ρξγ , (8)

that implicitly includes relevant higher order terms from stan-
dard many-body perturbation theory. We found that it is
mandatory to use fully dressed propagators–the solution of
Eq. (6)–but that this is also sufficient to account for all rel-
evant contributions. The next order correction is given by

�WT DA� = 1
4

Wαβγ,µνξ ρµα ∆Γνξ,βγ , (9)

where ∆Γ is the two-body density matrix after subtraction of
the zeroth-order contribution coming from two fully corre-

lated but non-interacting nucleons, to avoid double counting
with Eq. (8). We estimated this using in Tamn-Dancoff ap-
proximation (TDA) [29] and found its contribution to be small
compared to our estimated errors, as discussed below.

The binding energy and spectra of neighboring even-odd
isotopes are extracted from the poles of propagator (1), how-
ever this requires a proper correction to account for the vari-
ation in the kinetic energy of the c.o.m. motion with chang-
ing A. To extract the energy of a system with mass A ± 1, we
recalculate gαβ(ω) for the doubly closed subshell A-nucleon
system but with a �H(A ± 1) corrected Hamiltonian. We then
obtain:

E
A±1 = ±εA±1

0 [�H(A ± 1)] + E
A

0 [�H(A ± 1)] , (10)

where we made explicit the dependence on the c.o.m. correc-
tion for the Hamiltonian and E

A

0 [�H(A± 1)] is calculated using
the corrected Koltun SR.

Results. We perform calculations using chiral effective field
theory (EFT) two-nucleon (2N) and 3NFs evolved to low mo-
mentum scales by using free-space similarity renormalization
group (SRG) [30, 31]. The original 2N interaction is N3LO
with cutoff Λ2N=500 MeV [32, 33]. For the 3NF we use
the N2LO interaction in a local form [34] with a reduced cut-
off of Λ3N=400 MeV and low-energy constants cD=-0.2 and



Error estimates for the oxygen chain 
-  Convergence: 100-600 keV  $ 1% 
-  Many-body truncations        $ 1% 
-  !SRG-dep. (1.88-2.5fm-1) % 3-5% 

[see S. Binder, Phys. Rev. C, 87, 021303 (2013).] 
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Single nucleon transfer in the oxygen chain 

fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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WS and microscopic (SCGF) [30] form factors normalized to 1;
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
The authors thank N. T. Timofeyuk and N. Alamanos for

enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
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POLONIUM PHC under Grant No. 22470XA. Theoretical
work was supported by the UK’s STFC Grant No. ST/
J000051/1.
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Going to open-shells: Gorkov ansatz 
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as
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which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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ā†a(t)āb(t
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basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
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ā†a(t)āb(t
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ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t
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ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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Gorkov Green’s functions and equations 
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1st & 2nd order diagrams 
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Gorkov equations 

with the normalization condition 

Energy independent eigenvalue problem 
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Binding energies 

(Extrapolation to infinite model space from  
[Furnstahl, Hagen, Papenbrok 2012] and [Coon et al. 2012]) 
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FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
�ω and for an increasing size Nmax ≡ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of �ω
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10−3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with different J

π values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2− strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J

π = 7/2−. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10−1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays effective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for

$%&'(!23(!*+,+-.(!4567#!8-9#!2!FD(!<??><>!AB<?>C!Towards medium/heavy open-shell
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Calcium isotopic chain Calcium isotopic chain

! Ab initio calculation of the whole Ca chain with NN + 3N forces

" Induced 3NF and full 3NF investigated

" 3NF bring energies close to experiment
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" Original 3NF correct the energy curvature
[Somà et al. in preparation]

N3LO (" = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
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Two-neutron separation energies Two-neutron separation energies

! Neutron-rich extremes of the nuclear chart

" Good agreement with measured S2n

" Towards a quantitative ab initio description of the medium-mass region
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Knockout & transfer experiments Knockout & transfer experiments

tected in the High-Resolution Array (HiRA) [22] in coin-
cidence with the recoil residues detected in the S800 focal
plane [23]. An array of 16 HiRA telescopes [22] was
placed at 35 cm from the target where they subtended polar
angles of 6! " !lab " 45!. Each telescope contained
65 "m thick !E and 1500 "m thick E silicon strip de-
tectors, backed by 3.9 cm thick CsI(Tl) crystals. The strips
in these telescopes effectively subdivided each telescope
into 1024 pixels of 2 mm# 2 mm area. Detailed descrip-
tions of experimental setup can be found in Ref. [20].

Deuterons were identified in HiRAwith standard energy
loss techniques using the energy deposited in the!E and E
Silicon strip and CsI detectors. Reaction residues were
identified in the S800 spectrometer using the energy loss
and the time-of-flight (TOF) information of the focal plane
detectors [23]. Figures 1(a)–1(c) show the Q value spectra
for deuterons that stop in the thick Si detector for
pð34;36;46Ar; dÞ33;35;45Ar. The observed resolutions of 500,
470, and 410 keV FWHM for the transitions to the ground
states of 33;35;45Ar, respectively, agree with the expectation
from GEANT4 [24] simulations taking into account the finite
beam spot size, the energy resolution of the Si detectors,
energy loss, and angular straggling in the target.
Measurements using a 1:7 mg=cm2 carbon target reveal
that the background from reactions on carbon is negligible
when both deuteron and the heavy recoil are detected. The
absolute normalization of the cross section was achieved to
within 10% by directly counting the beam particles with a
microchannel plate detector [25] placed&10 cm upstream
of the target. This also provided the start TOF signal for
particles detected by the S800 spectrometer.

Figures 1(d)–1(f) show the differential cross sections for
the ground state transition of pð34Ar; dÞ33Ar,
pð36Ar; dÞ35Ar, and pð46Ar; dÞ45Ar, respectively. The solid
circles in the lower panels denote the data from present
measurements, and the open squares in Fig. 1(e) denote
previous 36Ar ðp; dÞ35Ar data in normal kinematics at
33:6 MeV=nucleon [21]. The agreement between the mea-
sured cross sections from the present work and Ref. [21]
for the first excited state is also very good [20]. For
pð46Ar; dÞ45Ar reaction, the ground state (f7=2) and the
first excited state (542 keV, p3=2) were not resolved for
center-of-mass angles larger than 8!. Fortunately, the l
values for the ground state (l ¼ 3) and first excited state
(l ¼ 1) are different, resulting in very different angular
distributions. Specifically, the angular distribution for the
excited state exhibits a deep minimum near !c:m: ¼

20!–27!, close to a factor of 100 smaller than that of
ground state; therefore, the cross sections for the ground
state could be unambiguously extracted [20].
The dashed curves in Figs. 1(d)–1(f) show the ADWA

calculations using the CH89 potential with the conven-
tional neutron bound-state Woods Saxon potential. The
solid lines in Figs. 1(d)–1(f) show the ADWA calculations
using the JLM microscopic potential and the bound-state
neutron potential, which have been constrained by Hartree-
Fock calculations. Both calculations reproduce the shape
of experimental angular distributions. Normalizing the
ADWA model calculations to the data results in the SF
values listed in Table I. Similar to previous analyses,
SFðJLMþ HFÞ values are about 30% smaller than the SF
(CH89) values. The ground state neutron SF’s for 34Ar and
36Ar were calculated in the sd-shell model space using
USDB effective interaction [26]. The ground state neutron
SF for 46Ar was calculated in the sd-pf model space using
the interaction of Nummela et al. [27].

TABLE I. Experimental and theoretical neutron spectroscopic factors (SF) and reduction factors (Rs) for ground state 34Ar, 36Ar and
46Ar.

(theo.) (expt.) (expt.)
Isotopes lj# Sn(MeV) !S (MeV) SF(LB-SM) SFðJLMþ HFÞ RsðJLMþ HFÞ SF(CH89) RsðCH89Þ

34Ar s1=2þ 17.07 12.41 1.31 0:85) 0:09 0:65) 0:07 1:10) 0:11 0:84) 0:08
36Ar d3=2þ 15.25 6.75 2.10 1:60) 0:16 0:76) 0:08 2:29) 0:23 1:09) 0:11
46Ar f7=2* 8.07 *10:03 5.16 3:93) 0:39 0:76) 0:08 5:29) 0:53 1:02) 0:10

FIG. 2 (color online). Reduction factors Rs ¼
SFðexptÞ=SFðLB-SMÞ as a function of the difference between
neutron and proton separation energies, !S. The solid and open
circles represent Rs deduced in JLMþ HF and CH89 approach
using the present transfer reaction data, respectively. The open
triangles denote the Rs from knockout reactions [11]. The
dashed line is the best fit of Rs of 32;34;46Ar from knockout
reactions. The use of different !S values from the present work
and knockout reactions in Ref. [11] is explained in Ref. [28].
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! Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL
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Knockout & transfer experiments Knockout & transfer experiments

clei with 3 ! Z ! 28 [13,14]. For most excited states of
stable nuclei with 3 ! Z ! 24, the agreement is slightly
worse, but within 30% [14]. If one uses a different optical
model potential, developed by Jeukenne, Lejeune, and
Mahaux (JLM) [16] with conventional scale factors of
!V ¼ 1:0 and !W ¼ 0:8 for the real and imaginary parts,
and constrains the geometry of these potentials and that of
the transferred-neutron bound state by Hartee-Fock calcu-
lations [17], one observes an overall reduction #30% in
the measured ground state spectroscopic factors [18]. This
implies reduction factors Rs $ ðexperimentalSFÞ=ðLB'
SM SFÞ of 30% in the latter approach, similar to the
reductions in proton SF’s extracted from (e, e0p) measure-
ments [19].

Regardless of the choice of optical model potential or
the geometry of the mean-field potential for the transferred
neutron, systematic analyses of neutron transfer reactions
display no strong dependence of the reduction factor Rs on
the neutron-proton asymmetry of the nuclei [13,14,18].
However, systematic uncertainties inherent in comparing
SF’s from different experiments published over a period of
more than 40 years reduce the sensitivity of such studies.

The available transfer reaction data include very few
neutron-rich or neutron-deficient nuclei. To explore more

extreme asymmetries, we extracted the ground state neu-
tron SF’s for 34Ar and 46Ar from (p, d) reactions using
proton-rich 34Ar and neutron-rich 46Ar beams in inverse
kinematics. SF’s from knockout reactions on these nuclei
have been published, and a significant reduction of the
neutron SF for 34Ar has been reported [11]. The difference
between the neutron and proton separation energy (!S),
which characterizes the relative shift of neutron and proton
Fermi energies in these nuclei, is 12.41 and '10:03 MeV
for 34Ar and 46Ar, respectively. In previous studies of
transfer reactions, there were no nuclei with j!Sj (
7 MeV [13,18].
In the present experiments, the deuteron angular distri-

butions from pð34Ar; dÞ 33Ar and pð46Ar; dÞ45Ar transfer
reactions were measured using radioactive secondary
beams of 34Ar and 46Ar at 33 MeV=nucleon at the
National Superconducting Cyclotron Laboratory at
Michigan State University [20]. The pð36Ar; dÞ35Ar reac-
tion was also measured using a degraded 36Ar primary
beam at 33 MeV=nucleon to compare with data previously
measured in normal kinematics [21]. These beams were
transported and focused on polyethylene targets ðCH2Þn
targets with areal densities of 7:10 mg=cm2 for 34;36Ar
and 2:29 mg=cm2 for 46Ar reactions. Deuterons were de-

FIG. 1 (color online). Q-value spectrum [(a)–(c), top panels] and ground state deuteron angular distributions [(d)–(f), bottom panels]
of pð34;36;46Ar; dÞ33;35;46Ar. The open squares in panel (e) are data from previous normal kinematics experiments [21]. The solid and
dashed lines represent the calculations using JLMþ HF and CH89 approach, respectively.
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Calcium isotopic chain
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! Original 3NF correct the energy curvature

! Good agreement with IM-SRG (quantitative when 3rd order included)

[Hergert et al. 2013]

Conclusions 
•  Self-Consistent Green’s Functions (SCGF), is a microscopic ab-initio method applicable to 
medium mass nuclei. Greatest advantage is the link to several (experimentally accessible) 
information. 

• Addition of  three nucleon forces (3NF): 
! Effective N+NN hamiltonian with int. irred. diagrams  
! Needed to properly predict BEs and dripline physics 
! First ab-initio study of AN and AF chains 

•  Proof of principle calculations Gorgov theory  are 
  successful at 2nd order. This de facto show opens 
  a whole new path: 

! Open-shell nuclei (many, not previously approachable otherwise!). 
! Reactions at driplines. 
! structure of next generation EDF. 
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! Three-point mass differences

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN

abcdef
≡ �1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f�
≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†

x
). It follows

that

t
āb̄

≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN

ābc̄d
≡ ηa ηc �1:ā; 2:b|V NN |1:c̄; 2:d� , (8)

V̄ NN

āb̄c̄d̄
≡ ηa ηb ηc ηd �1:ā; 2:b̄|V NN |1:c̄; 2:d̄� , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 �, so-
lution of

H |ΨN

k
� = EN

k
|ΨN

k
� (10)

with the lowest eigenvalue EN

0 . The fundamental object
of Green’s function theory is the single-particle propaga-
tor, defined as

iGab(t, t
�) ≡ �ΨN

0 |T
�
aa(t)a

†
b
(t�)

�
|ΨN

0 � , (11)

Gab(ω) =

�
d (t− t�) eiω(t−t

�) Gab(t, t
�) (12)

�Ô� =
�

ab

�
dω

2π
Oab Gab(ω) (13)

Ô =
�

ab

Oab a
†
a
ab (14)

�T̂ � =
�

ab

�
dω

2π
tab Gab(ω) (15)

�Ĥ� = E0 =
�

ab

�
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b

(t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†
b
(t) =

�
a(H)
b

(t)
�†

≡ exp[iHt] a†
b
exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.

The equations of motion for the Green’s functions take
the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i+ 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

∆(3)
n

(A) =
(−1)A

2
[EA+1

0 − 2EA

0 + EA−1
0 ] (18)

a

c

d

b

ΣR

cd
(ω) (19)

Gab(ω) = G(0)
ab

(ω) +
�

cd

G (0)
ac

(ω)Σ�
cd
(ω)Gdb(ω) (20)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
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! Inversion of odd-even staggering

" Second order and 3NF necessary to invert the staggering
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