Four-nucleon reactions

A. Deltuva

Centro de Física Nuclear da Universidade de Lisboa

In collaboration with A. C. Fonseca and P. U. Sauer

Four-nucleon scattering

- Three-particle scattering equations
- 3N reactions
- Four-nucleon scattering equations
- 4N reactions below 3-cluster breakup
- AN reactions above 3- and 4-cluster breakup

Three-particle system

Hamiltonian $H_0 + \sum_{\alpha} v_{\alpha}$

Three-particle system

Hamiltonian
$$H_0 + \sum_{\alpha} v_{\alpha}$$

Faddeev equations

$$(E - H_0 - v_{\alpha}) | \mathbf{\psi}_{\alpha} \rangle = v_{\alpha} \sum_{\gamma} \bar{\delta}_{\alpha\gamma} | \mathbf{\psi}_{\sigma} \rangle$$
$$| \mathbf{\Psi} \rangle = \sum_{\alpha} | \mathbf{\psi}_{\alpha} \rangle$$

Alt, Grassberger, and Sandhas equations

$$egin{split} m{U}_{etalpha} &= ar{\delta}_{etalpha} G_0^{-1} + \sum_{\gamma} ar{\delta}_{eta\gamma} T_{\gamma} G_0 m{U}_{\gammalpha} \ m{U}_{etalpha} &= G_0^{-1} + \sum_{\gamma} T_{\gamma} G_0 m{U}_{\gammalpha} \end{split}$$

$$T_{\gamma} = v_{\gamma} + v_{\gamma}G_0T_{\gamma}$$

 $G_0 = (E + i0 - H_0)^{-1}$
channel states $(E - H_0 - v_{lpha})|\phi_{lpha}
angle = 0$

AGS equations with 3BF

$$V_{3BF} = \sum_{\alpha=1}^{3} w_{\alpha}$$

$$egin{split} m{U}_{m{eta}lpha} &= ar{\delta}_{m{eta}lpha} G_0^{-1} + \sum_{m{\gamma}}ar{\delta}_{m{eta}m{\gamma}} T_{m{\gamma}} G_0 m{U}_{m{\gamma}m{lpha}} \ &+ w_{m{lpha}} + \sum_{m{\gamma}} w_{m{\gamma}} G_0 (1 + T_{m{\gamma}} G_0) m{U}_{m{\gamma}m{lpha}} \end{split}$$

AGS equations: numerical solution

$$U = PG_0^{-1} + PTG_0U$$

+ (1+P)w + (1+P)wG_0(1+TG_0)U

- symmetrized for 3N: $P = P_{12}P_{23} + P_{13}P_{23}$
- momentum-space partial wave basis
- set of coupled 2-variable integral equations
- integrable singularities in kernel
- Coulomb interaction: screening and renormalization

[PRC 71, 054005; PRC 72, 054004; PRC 80, 064002]

Coulomb vs 3NF: ¹**H**(**d**,**pp**)**n at** $E_d = 130$ MeV

 ${}^{3}\vec{\mathrm{He}}(\vec{\gamma},n)pp$ at $E_{\gamma} = 12.8 \,\mathrm{MeV}$

Four-particle scattering

Hamiltonian
$$H_0 + \sum_{i>j} v_{ij}$$

- Wave function:
 Schrödinger equation
- Wave function components: Faddeev-Yakubovsky equations
- Transition operators: Alt-Grassberger-Sandhas equations

Symmetrized AGS equations

$$t = v + vG_0t$$

$$G_0 = (E + i\varepsilon - H_0)^{-1}$$

$$u_j = P_jG_0^{-1} + P_jtG_0u_j$$

$$3 + 1: P_1 = P_{12}P_{23} + P_{13}P_{23}$$

$$2 + 2: P_2 = P_{13}P_{24}$$

$$\begin{split} & U_{11} = (G_0 t G_0)^{-1} \zeta P_{34} + \zeta P_{34} u_1 G_0 t G_0 U_{11} + u_2 G_0 t G_0 U_{21} \\ & U_{21} = (G_0 t G_0)^{-1} (1 + \zeta P_{34}) + (1 + \zeta P_{34}) u_1 G_0 t G_0 U_{11} \\ & U_{12} = (G_0 t G_0)^{-1} + \zeta P_{34} u_1 G_0 t G_0 U_{12} + u_2 G_0 t G_0 U_{22} \\ & U_{22} = (1 + \zeta P_{34}) u_1 G_0 t G_0 U_{12} \\ & \zeta = -1 \ (+1) \ \text{for fermions (bosons)} \\ & \text{basis states partially symmetrized} \end{split}$$

Scattering amplitudes: $E + i\varepsilon \rightarrow E + i0$

2-cluster reactions:

$$T_{fi} = s_{fi} \langle \phi_f | U_{fi} | \phi_i \rangle$$

 $|\phi_j \rangle = G_0 t P_j | \phi_j \rangle$
 $|\Phi_j \rangle = (1 + P_j) | \phi_j \rangle$

3-cluster breakup/recombination:

 $T_{3i} = s_{3i} \langle \phi_3 | [(1 + \zeta P_{34}) u_1 G_0 t G_0 U_{1i} + u_2 G_0 t G_0 U_{2i}] | \phi_i \rangle$

4-cluster breakup/recombination:

$$T_{4i} = s_{4i} \{ \langle \phi_4 | [1 + (1 + P_1) \zeta P_{34}] (1 + P_1) t G_0 u_1 G_0 t G_0 U_{1i} | \phi_i \rangle \\ + \langle \phi_4 | (1 + P_1) (1 + P_2) t G_0 u_2 G_0 t G_0 U_{2i} | \phi_i \rangle \}$$

Wave function

$|\Psi_{i}\rangle = s_{i}\{[1+(1+P_{1})\zeta P_{34}](1+P_{1})|\psi_{1,i}\rangle + (1+P_{1})(1+P_{2})|\psi_{2,i}\rangle\}$

with Faddeev-Yakubovsky components

$$|\Psi_{j,i}\rangle = \delta_{ji}|\phi_i\rangle + G_0 t G_0 u_j G_0 t G_0 U_{ji}|\phi_i\rangle$$

Solution of 4N AGS equations

 $U_{11}|\phi_1\rangle = -G_0^{-1}P_{34}P_1|\phi_1\rangle - P_{34}u_1G_0tG_0U_{11}|\phi_1\rangle + u_2G_0tG_0U_{21}|\phi_1\rangle$

- momentum-space partial-wave basis $|k_{x}k_{y}k_{z}[l_{z}(\{l_{y}[(l_{x}S_{x})j_{x}s_{y}]S_{y}\}J_{y}s_{z})S_{z}]JM, [(T_{x}t_{y})T_{y}t_{z}]TM_{T}\rangle_{1}$ $|k_{x}k_{y}k_{z}[l_{z}\{(l_{x}S_{x})j_{x}[l_{y}(s_{y}s_{z})S_{y}]j_{y}\}S_{z}]JM, [T_{x}(t_{y}t_{z})T_{y}]TM_{T}\rangle_{2}$
- Iarge system (up to 30000) of coupled 3-variable integral equations with integrable singularities
- Coulomb interaction: screening and renormalization [PRC 75, 014005, PRL 98, 162502]

Singularities of 4N AGS equations

³H, ³He, or d+d bound state poles

$$G_0 u_j G_0 \rightarrow \frac{P_j |\phi_j\rangle s_{jj} \langle \phi_j | P_j}{E + i\varepsilon - E_j^b - k_z^2/2\mu_j}$$

treated by subtraction below 3-cluster threshold

$$\begin{split} \int_{p}^{q} k_{z}^{2} dk_{z} \frac{F(k_{z})}{k_{0}^{2} - k_{z}^{2} + i0} \\ &= \mathcal{P} \int_{p}^{q} k_{z}^{2} dk_{z} \frac{F(k_{z})}{k_{0}^{2} - k_{z}^{2}} - \frac{1}{2} i\pi k_{0} F(k_{0}) \\ &= \int_{p}^{q} dk_{z} \frac{k_{z}^{2} F(k_{z}) - k_{0}^{2} F(k_{0})}{k_{0}^{2} - k_{z}^{2}} \\ &- \frac{1}{2} k_{0} F(k_{0}) \left[i\pi + \ln \frac{(k_{0} + p)(q - k_{0})}{(k_{0} - p)(k_{0} + q)} \right] \end{split}$$

p-³He scattering

AGS/HH/FY (Lisbon/Pisa/Strasbourg, PRC 84, 054010)

$\Delta\textsc{-isobar}$ excitation: effective 3N and 4N forces

[PLB 660, 471]

Charge exchange reaction ${}^{3}\text{H}(p,n){}^{3}\text{He}$

d-*d* elastic scattering at $E_d = 3$ MeV

[PLB 660, 471]

² $H(d,p)^{3}H$ and ² $H(d,n)^{3}He$

² $H(d,p)^{3}H$ and ² $H(d,n)^{3}He$

Above breakup: additional singularities in AGS equations

deuteron bound state poles

$$t \to \frac{v|\phi_d\rangle\langle\phi_d|v}{E + i\varepsilon - e_d - k_y^2/2\mu_j^y - k_z^2/2\mu_j}$$

free resolvent

$$G_0 \rightarrow rac{1}{E + i\epsilon - k_x^2/2\mu_j^x - k_y^2/2\mu_j^y - k_z^2/2\mu_j}$$

Above breakup: additional singularities in AGS equations

deuteron bound state poles

$$t \rightarrow \frac{v |\phi_d\rangle \langle \phi_d | v}{E + i\varepsilon - e_d - k_y^2 / 2\mu_j^y - k_z^2 / 2\mu_j}$$

free resolvent

$$G_0 \rightarrow rac{1}{E + i\epsilon - k_x^2/2\mu_j^x - k_y^2/2\mu_j^y - k_z^2/2\mu_j}$$

treated by complex-energy method:

1. solve for $U_{fi}(E + i\varepsilon)$ with finite $\varepsilon = \varepsilon_1, ..., \varepsilon_n$

2. extrapolate to $\varepsilon \rightarrow 0$ for physical amplitudes $U_{fi}(E+i0)$

[H. Kamada et al, Prog. Theor. Phys. 109, 869L (2003)]

Integration with special weights

accuracy & efficiency of the complex-energy method is greatly improved by a special integration

$$\int_{a}^{b} \frac{f(x)}{x_{0}^{n} + iy_{0} - x^{n}} dx \approx \sum_{j=1}^{N} f(x_{j}) w_{j}(n, x_{0}, y_{0}, a, b)$$

where the quasi-singular factor is absorbed into special weights

$$w_j(n, x_0, y_0, a, b) = \int_a^b \frac{S_j(x)}{x_0^n + iy_0 - x^n} dx$$

that may be calculated using spline functions $\{S_j(x)\}$ for standard Gaussian grid $\{x_j\}$ [PRC 86, 011001]

Extrapolation $\varepsilon \rightarrow 0$: n+³H at 22.1 MeV

Extrapolation $\epsilon \rightarrow 0$: n+³H at 22.1 MeV

$[\epsilon_{min}, \epsilon_{max}]$	$\delta(^1S_0)$	$\eta(^1S_0)$	$\delta(^{3}P_{0})$	$\eta(^{3}P_{0})$	$\delta(^{3}P_{2})$	$\eta(^{3}P_{2})$
[1.0, 2.0]	62.63	0.990	43.03	0.959	65.27	0.950
[1.2, 2.0]	62.60	0.991	43.04	0.959	65.29	0.951
[1.4, 2.0]	62.67	0.991	43.03	0.958	65.27	0.950
[1.2, 1.8]	62.65	0.992	43.03	0.959	65.28	0.950
1.4	73.37	0.916	44.77	0.840	67.38	0.933

[PRC 86, 011001]

n+³**H total and breakup cross sections**

Recombination reaction ${}^{2}\mathbf{H}+\mathbf{n}+\mathbf{n} \rightarrow \mathbf{n}+{}^{3}\mathbf{H}$

$$\frac{d\rho_t}{dt} = K_2^{\gamma}\rho_d\rho_n + K_3\rho_d\rho_n^2 + \dots$$

[PRC 87, 014002]

[PRC 87, 054002]

p+d elastic scattering at $E_p = 135$ MeV

[PRC 80, 064002]

$p+^{3}$ He elastic scattering: Δ effects

Extension: 3-body nuclear reactions

[PRC 79, 021602, PRC 79, 054603]

Extension: 4-boson universal physics

[EPL 95, 43002, PRA 85, 042705]

Summary

- 3/4-body Faddev/AGS equations in momentum space
- complex-energy method with special integration weights

Summary

- 3/4-body Faddev/AGS equations in momentum space
- complex-energy method with special integration weights
- SN hadronic and e.m. reactions
- 4N scattering
- 3-body nuclear reactions
- universal 4-boson physics