Infinite Cut-off Regularization of Chiral Nucleon-Nucleon Forces

From Few-Nucleon Forces to Many-Nucleon Structure

ECT* June 2013

D. R. Entem

Thanks to my Collaborators R. Machleidt, Ch. Zeoli, E. Ruiz-Arriola, M. Pavón-Valderrama

University of Salamanca

Outline

- **EFT for the** *NN* **system**
- The perturbative amplitude and the definition of the potential
- Singular potentials
- **\square** Renormalization with $\Lambda \gg \Lambda_{\chi}$
 - **The** 1S_0 partial wave
 - **Renormalization of the** N^3LO potential.

'Infinite-cutoff renormalization of the chiral nucleon-nucleon interaction at N^3LO Ch. Zeoli, R. Machleidt, D.R. Entem, Few Body Systems (2012) 1-15 (arXiv:1208.2657)

Renormalization with $\Lambda < \Lambda_{\chi}$

'Recent Progress in the Theory of Nuclear Forces'

R. Machleidt, Q. MacPherson, E. Marji, R. Winzer, Ch. Zeoli, D.R. Entem, arXiv:1210.0992

Chiral EFT

- **Effective degrees of freedom**
 - nucleons
 - **Chiral symmetry breaking** \rightarrow **pions**
- Simetries: non linear realization of chiral symmetry
- Lagrangian:

 $\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \ldots =$ all terms consistent with the symmetries

- Non renormalizable theory
- Power counting

 $\nu = 4 - N + 2(L - C) + \sum_{i} V_i \Delta_i$ $\Delta_i = d_i + \frac{n_i}{2} - 2 \ge 0$

- **Low energy expansion** $(Q/\Lambda)^{\nu}$
- Contact terms.

$$L \leq \frac{\nu}{2}$$

Chiral EFT

Order $\nu = 0$

Charge dependent OPE

 $V_{1\pi}^{(np)}(\vec{p}',\vec{p}) = -V_{1\pi}(m_{\pi^0}) + (-1)^{T+1} 2V_{1\pi}(m_{\pi^{\pm}})$

2π contributions

2π exchange contributions

2π exchange contributions

The perturbative amplitude

- **All** amplitudes are evaluated using dimensional regularization and \overline{MS} .
- The ampitude is organize as

 $\begin{aligned} \mathcal{V}_{LO} &= \mathcal{V}_{ct}^{(0)} + \mathcal{V}_{1\pi}^{(0)} \\ \mathcal{V}_{NLO} &= \mathcal{V}_{LO} + \mathcal{V}_{ct}^{(2)} + \mathcal{V}_{1\pi}^{(2)} + \mathcal{V}_{2\pi}^{(2)} \\ \mathcal{V}_{NNLO} &= \mathcal{V}_{NLO} + \mathcal{V}_{1\pi}^{(3)} + \mathcal{V}_{2\pi}^{(3)} \\ \mathcal{V}_{N^{3}LO} &= \mathcal{V}_{NNLO} + \mathcal{V}_{ct}^{(4)} + \mathcal{V}_{1\pi}^{(4)} + \mathcal{V}_{2\pi}^{(4)} + \mathcal{V}_{3\pi}^{(4)} \end{aligned}$

Contacts exactly absorb the infinities due to loop diagrams

Weinberg's proposal

- Evidences of non-perturbative nature: large scattering lengths and a bound state in NN
- Iterative diagrams breaks the Chiral expansion (non-perturbative)

$$\int \frac{d^3q}{(2\pi)^3} V(p',q) \frac{m_N}{k^2 - q^2 + i\epsilon} V(q,p)$$

If $V(p', p) = C_0$ $\int \frac{d^3q}{(2\pi)^3} C_0 \frac{m_N}{k^2 - q^2 + i\epsilon} C_0 = -iC_0^2 \frac{m_N k}{4\pi}$

- Compute the potential using Chiral EFT and include it in a Lippmann-Schwinger Equation to account for the non-perturbative contribution
- Can the same counter terms renormalize the final result?

We use the Blankenbecler Sugar reduction of the Bethe-Salpeter equation

 $\mathcal{M} = \mathcal{V} + \mathcal{VGM}$

or

 $\mathcal{M} = \mathcal{W} + \mathcal{W}g\mathcal{M}$ with $\mathcal{W} = \mathcal{V} + \mathcal{V}(\mathcal{G} - g)\mathcal{W}$

So

In the center of mass frame $P = (\sqrt{s}, \vec{0})$ with \sqrt{s} the total energy

The Blankenbecler Sugar propagator is

$$g_{BbS}(k|P) = -\frac{1}{(2\pi)^3} \int_{4M_N^2}^{\infty} \frac{ds'}{s'-s-i\epsilon} \delta^+ \left(\left(\frac{1}{2}P'+k\right)^2 - M_N^2\right) \delta^+ \left(\left(\frac{1}{2}P'-k\right)^2 - M_N^2\right) \\ \left[\frac{1}{2} \not\!\!\!P'\!\!+ \not\!\!\!k + M_N\right]^{(1)} \left[\frac{1}{2} \not\!\!\!P'\!\!- \not\!\!\!k + M_N\right]^{(2)} \\ = \delta(k_0) \bar{g}_{BbS}(\vec{k}|P) = \delta(k_0) \frac{1}{(2\pi)^3} \frac{M_N^2}{E_k} \frac{\Lambda_+^{(1)}(\vec{k}) \Lambda_+^{(2)}(-\vec{k})}{\frac{1}{4}s - E_k^2 + i\epsilon}$$

with

$$\Lambda^{(i)}_{+}(\vec{k}) = \sum_{\lambda_i} u(\vec{k}, \lambda_i) \bar{u}(\vec{k}, \lambda_i)$$

- Propagate only the positive energy solutions
- **The** $\delta(k_0)$ implies that both nucleons are equally off-shell
- $\square Initial nucleons on-shell q_0 = 0$
- **Integration over** k_0

So

 $\mathcal{M}(0, \vec{q}'; 0, \vec{q} | P) = \mathcal{W}(0, \vec{q}'; 0, \vec{q} | P) + \int d^3 k \mathcal{W}(0, \vec{q}'; 0, \vec{k} | P) \bar{g}_{BbS}(\vec{k} | P) \mathcal{M}(0, \vec{k}; 0, \vec{q} | P)$

with

$$\mathcal{W} = \mathcal{V} + \mathcal{V}(\mathcal{G} - g_{BbS})\mathcal{V} + \mathcal{V}(\mathcal{G} - g_{BbS})\mathcal{V}(\mathcal{G} - g_{BbS})\mathcal{V} + \dots$$

as $\sqrt{s} = 2E_q$

$$\mathcal{M}(\vec{q}', \vec{q}) = \mathcal{W}(\vec{q}', \vec{q}) + \int \frac{d^3k}{(2\pi)^3} \mathcal{W}(\vec{q}', \vec{k}) \frac{M_N^2}{E_k} \frac{\Lambda_+^{(1)}(\vec{k})\Lambda_+^{(2)}(-\vec{k})}{\vec{q}^2 - \vec{k}^2 + i\epsilon} \mathcal{M}(\vec{k}, \vec{q})$$

Taking matrix elements (and turning to the more common notation q = p and q' = p')

$$\mathcal{T}(\vec{p}', \vec{p}) = V(\vec{p}', \vec{p}) + \int \frac{d^3k}{(2\pi)^3} V(\vec{p}', \vec{k}) \frac{M_N^2}{E_k} \frac{1}{\vec{p}^2 - \vec{k}^2 + i\epsilon} \mathcal{T}(\vec{k}, \vec{p})$$

$$\mathcal{T}(\vec{p}', \vec{p}) = V(\vec{p}', \vec{p}) + \int \frac{d^3k}{(2\pi)^3} V(\vec{p}', \vec{k}) \frac{M_N^2}{E_k} \frac{1}{\vec{p}^2 - \vec{k}^2 + i\epsilon} \mathcal{T}(\vec{k}, \vec{p})$$

So if we take the definition ('minimal relativity')

$$\hat{T}(\vec{p}', \vec{p}) = \frac{1}{(2\pi)^3} \sqrt{\frac{M_N}{E'_p}} T(\vec{p}', \vec{p}) \sqrt{\frac{M_N}{E_p}}$$
$$\hat{V}(\vec{p}', \vec{p}) = \frac{1}{(2\pi)^3} \sqrt{\frac{M_N}{E'_p}} V(\vec{p}', \vec{p}) \sqrt{\frac{M_N}{E_p}}$$

we end up with Lippman-Schwinger Eq.

$$\hat{T}(\vec{p}',\vec{p}) = \hat{V}(\vec{p}',\vec{p}) + \int d^3k \hat{V}(\vec{p}',\vec{k}) \frac{M_N}{\vec{p}^2 - \vec{k}^2 + i\epsilon} \hat{T}(\vec{k},\vec{p})$$

Notice that the energy-momentum relation is the relativistic one so

 ${}^{2} = \frac{M_{p}^{2}T_{L}(T_{L}+2M_{n})}{(M_{p}+M_{n})^{2}+2T_{L}M_{p}}$

and we use

 $M_N = \frac{2M_p M_n}{M_p + M_n}$

Also notice that now the box diagram is

$$\mathcal{W}_{box} = \mathcal{V}_{1\pi}(\mathcal{G} - g_{BbS})\mathcal{V}_{1\pi}$$

This makes an slight difference of our irreducible box contribution and Kaiser *et al.* convention

Details in Phys. Rep. 503, 1 (2011)

Singular potentials

- Higher orders in the Chiral expansion produces singular potentials
 - **More singular than** $1/r^2$ when $r \to 0$.
 - **Divergent when** $q \rightarrow \infty$ **.**
- The Lippman-Schwinger Eq. has to be regularized
- In order to obtain regularization independence there are two points of view
 - **Use** $\Lambda \gg \Lambda_{\chi}$
 - Lepage plots point of view, use Λ between the low energy and the high energy scales so $\Lambda < \Lambda_{\chi}$.

The tensor part of the *LO* potential is already singular Nogga, Timmermans and van Kolck in momentum space Pavón-Valderrama and Ruiz-Arriola in coordinate space

Pionless EFT

$$T_{\Lambda}(\vec{k}',\vec{k};k) = C + \frac{m_N}{2\pi^2} \int_0^{\Lambda} dq C \frac{q^2}{k^2 - q^2 + i\epsilon} T_{\Lambda}(\vec{k}',\vec{k};k)$$

Solution

$$T_{\Lambda}(\vec{k}',\vec{k};k) = \frac{C(\Lambda)}{1-C(\Lambda)I(k,\Lambda)}$$

with

$$I(k,\Lambda) = \frac{m_N}{2\pi^2} \int_0^\Lambda dq \frac{q^2}{k^2 - q^2 + i\epsilon} = \frac{m_N}{2\pi^2} \left(-\Lambda + \frac{k}{2} \log \frac{\Lambda + k}{\Lambda - k}\right) - i \frac{m_N}{4\pi} k$$

Fix $C(\Lambda)$ at a certain energy scale μ

$$T(\mu) = T_{\Lambda}(\vec{k}', \vec{k}; \mu) = \frac{C(\Lambda, \mu)}{1 - C(\Lambda, \mu)I(\mu, \Lambda)} \Rightarrow C^{-1}(\Lambda, \mu) = T^{-1}(\mu) + I(\mu, \Lambda)$$

Pionless EFT

$$T_{\Lambda}(\vec{k}',\vec{k};k) = \frac{C(\Lambda)}{1 - C(\Lambda)I(k,\Lambda)} = \frac{1}{C^{-1}(\Lambda,\mu) - I(k,\Lambda)} = \frac{1}{T^{-1}(\mu) + I(\mu,\Lambda) - I(k,\Lambda)}$$

But

$$I(\mu,\Lambda) - I(k,\Lambda) = \frac{m_N}{2\pi^2} \left(\frac{\mu}{2}\log\frac{\Lambda+\mu}{\Lambda-\mu} - \frac{k}{2}\log\frac{\Lambda+k}{\Lambda-k}\right) - i\frac{m_N}{4\pi}(\mu-k)$$

The result is finite for any value of Λ

$$\lim_{\Lambda \to \infty} I(\mu, \Lambda) - I(k, \Lambda) = -i\frac{m_N}{4\pi}(\mu - k)$$
$$\lim_{\Lambda \to \infty} T_\Lambda(\vec{k}', \vec{k}; k) = \frac{1}{T^{-1}(\mu) - i\frac{m_N}{4\pi}(\mu - k)} = \frac{T(\mu)}{1 + m_N T(\mu)(ik - i\mu)/4\pi}$$

T. Frederico, V.S. Timoteo, L. Tomio C.-J. Yang, Ch. Elster, D.R. Phillips

Zero Energy

$$T_{\Lambda}(p',0;0) = V(p',0) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p',p'') + C}{-p''^{2}}\right) T_{\Lambda}(p'',0;0)$$

$$T_{\Lambda}(0,0;0) = V(0,0) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(0,p'') + C}{-p''^{2}}\right) T_{\Lambda}(p'',0;0)$$

 $T_{\Lambda}(0,0;0) = T(0,0;0) = rac{a}{M}$

 $T_{\Lambda}(p',0;0) = V(p',0) + \frac{a}{M} + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p',p'') - V(0,p'')}{-p''^{2}} \right) T_{\Lambda}(p'',0;0)$

T. Frederico, V.S. Timoteo, L. Tomio C.-J. Yang, Ch. Elster, D.R. Phillips

Zero Energy

$$T_{\Lambda}(p', p; 0) = V(p', p) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p', p'') + C}{-p''^{2}} \right) T_{\Lambda}(p'', p; 0)$$

$$T_{\Lambda}(0, p; 0) = V(0, p) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(0, p'') + C}{-p''^{2}} \right) T_{\Lambda}(p'', p; 0)$$

 $T_{\Lambda}(0,0;0) = T(0,0;0) = \frac{a}{M}$

 $T_{\Lambda}(p',0;0) = V(p',0) + \frac{a}{M} + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p',p'') - V(0,p'')}{-p''^{2}} \right) T_{\Lambda}(p'',0;0)$

T. Frederico, V.S. Timoteo, L. Tomio C.-J. Yang, Ch. Elster, D.R. Phillips

Zero Energy

$$T_{\Lambda}(p', \mathbf{p}; 0) = V(p', \mathbf{p}) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p', p'') + C}{-p''^{2}} \right) T_{\Lambda}(p'', \mathbf{p}; 0)$$

$$T_{\Lambda}(0, \mathbf{p}; 0) = V(0, \mathbf{p}) + C + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(0, p'') + C}{-p''^{2}} \right) T_{\Lambda}(p'', \mathbf{p}; 0)$$

 $T_{\Lambda}(0,0;0) = T(0,0;0) = \frac{a}{M}$

 $T_{\Lambda}(p',0;0) = V(p',0) + \frac{a}{M} + \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p',p'') - V(0,p'')}{-p''^{2}} \right) T_{\Lambda}(p'',0;0)$ $T_{\Lambda}(p,0;0) = T_{\Lambda}(0,p;0)$

 $T_{\Lambda}(p',p;0) - T_{\Lambda}(0,p;0) = V(p',p) - V(0,p)$ $+ \frac{2}{\pi} M \int_{0}^{\Lambda} dp'' \, p''^{2} \left(\frac{V(p',p'') - V(0,p'')}{-p''^{2}} \right) T_{\Lambda}(p'',p;0)$

T. Frederico, V.S. Timoteo, L. Tomio C.-J. Yang, Ch. Elster, D.R. Phillips

Non-zero energy

 $T_{\Lambda}(0) = (V+C) + T_{\Lambda}(0)G_{\Lambda}(0)(V+C) \implies (V+C) = T_{\Lambda}(0)(1+T_{\Lambda}(0)G_{\Lambda}(0))^{-1}$

 $T_{\Lambda}(E) = (V+C) + (V+C)G_{\Lambda}(E)T_{\Lambda}(E) \Rightarrow (V+C) = T_{\Lambda}(E)(1+G_{\Lambda}(E)T_{\Lambda}(E))^{-1}$

$T_{\Lambda}(E) = T_{\Lambda}(0) + T_{\Lambda}(0)(G_{\Lambda}(E) - G_{\Lambda}(0))T_{\Lambda}(E)$

- **Half off-shell T-Matrix at** E = 0
- **Full off-shell T-Matrix at** E = 0
- **Full off-shell T-Matrix at** *E*
- **The value of** T(0,0;0) **is fixed**

${}^{1}S_{0}$ partial wave

We fit the contact term to the np scattering length $a_{np} = -23,75 \, fm$

D.R. Entem, E.R. Arriola, M. Pavon-Valderrama, R. Machleidt, PRC 77, 044006 (2008)

${}^{1}S_{0}$ partial wave

We fit the contact term to the np scattering length $a_{np} = -23,75 fm$

D.R. Entem, E.R. Arriola, M. Pavon-Valderrama, R. Machleidt, PRC 77, 044006 (2008)

Regularization dependence - NLO

NLO

Regularization dependence - N³LC

N^3LO

NLO Gaussian cutoff

 $T_{lab} = 50 \, MeV$

NLO Gaussian cutoff

 $T_{lab} = 50 \, MeV$

NLO Gaussian cutoff

 $T_{lab} = 50 \, MeV$

NLO Regularization dependence ($\Lambda = 6 \, GeV$ **)**

 $T_{lab} = 50 \, MeV$

NLO Regularization dependence ($\Lambda = 6 \, GeV$ **)**

 $T_{lab} = 50 \, MeV$

Sharp cutoff ($\Lambda = 4 \, GeV$)

 $T_{lab} = 50 \, MeV$

Sharp cutoff ($\Lambda = 4 \, GeV$)

 $T_{lab} = 50 \, MeV$

 $\Lambda \gg \Lambda_{\chi}$ up to $N^3 LO$

'Infinite-cutoff renormalization of the chiral nucleon-nucleon interaction at N^3LO Ch. Zeoli, R. Machleidt, D.R. Entem, Few Body Systems (2012) 1-15 (arXiv:1208.2657)

- We include one counter term for short range attractive partial waves
- No counter term is needed for short range repulsive partial waves
- **A second counter terms is ineffective for** $\Lambda \gg \Lambda_{\chi}$.
- **We vary** Λ between 0.5 and 10 GeV
- **We fit** $a_s = 23,740$ fm $a_t = 5,417$ fm and the phase shift at $T_L = 50$ MeV ($J \le 2$)

S = 0 and T = 1

S = 0 and T = 0

Partial wave	LO	NLO	NNLO	N ³ LO
${}^{3}S_{1}$	1	0	1	1
${}^{3}S_{1} - {}^{3}D_{1}$	0	0	1	0
${}^{3}D_{1}$	0	0	0	0

Final remarks

- \square ¹S₀ and ¹P₁ show convergence but not to the empiral phase-shifts
- \blacksquare ³*P*₀ agrees with empiral phase-shifts but shows no convergence
- ${}^{3}S_{1} {}^{3}D_{1}$, ${}^{3}D_{2}$ and ${}^{3}D_{3}$ show no convergence and disagrees with empiral phase-shifts
- \blacksquare Cut-off independence is achivied with $\Lambda > 5~{\rm GeV}$
- Order by order improvements of the predictions do not occur in several partial waves

 $\Lambda < \Lambda_{\chi}$

'Recent Progress in the Theory of Nuclear Forces' R. Machleidt, Q. MacPherson, E. Marji, R. Winzer, Ch. Zeoli, D.R. Entem, arXiv:1210.0992

