Nuclear structure and reactions from coupledcluster theory Gaute Hagen (ORNL)

Collaborators:

Andreas Ekström (MSU) Christian Forrsen (Chalmers) P. Hagen (Bonn) H.-W. Hammer (Bonn) Morten Hjorth-Jensen (UiO/MSU) Gustav Jansen (UT/ORNL) Ruprecht Machleidt (UI) Witold Nazarewicz (UT/ORNL) Thomas Papenbrock (UT/ORNL) L. Platter (ANL) Jason Sarich (ANL) Stefan Wild (ANL)

ECT, Trento, June 13 2013

Outline

- 1. Optimization of interactions from Chiral Effective Field Theory.
- 2. Physics of nuclei at the limits of stability and Coupled-Cluster theory
- 3. Structure of neutron rich oxygen and fluorine isotopes from optimized chiral interactions
- 4. Shell evolution in neutron rich calcium isotopes: Is ⁵⁴Ca (N=34) a magic nucleus?
- 5. Coupled-cluster approach to nucleon-nucleus scattering: *p*-⁴⁰Ca elastic scattering
- 6. Merging coupled-cluster with halo EFT: Efimov physics around the neutron rich ⁶⁰Ca

What is the right power counting?

Optimization of Chiral interactions at NNLO

Optimization strategy of chiral interactions

Sources of error:

- 1. Experimental error how does this propagate from light to medium mass nuclei?
- 2. Error from truncation at a given order in chiral EFT:
 - Establish the correct power counting and placement of counter terms

$$\chi^2 = \sum \frac{(\text{Theory} - \text{Exp.})}{\text{Error}}$$

- Minimize the objective function with respect to pool of data
- Compute the co-variance matrix and perform sensitivity analysis

Study propagation of error from light to medium mass

Physics of nuclei at the edges of stability

Coupled-cluster method (in CCSD approximation)

Ansatz:

$$|\Psi\rangle = e^{T}|\Phi\rangle$$

$$T = T_{1} + T_{2} + \dots$$

$$T_{1} = \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i}$$

$$T_{2} = \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}$$

- Scales gently (polynomial) with increasing problem size o²u⁴.
- © Truncation is the only approximation.
- ③ Size extensive (error scales with A)
- ☺ Most efficient for doubly magic nuclei

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled cluster equations

 $E = \langle \Phi | \overline{H} | \Phi \rangle$ $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$ $\overline{H} \equiv e^{-T} H e^T = \left(H e^T \right)_c = \left(H + H T_1 + H T_2 + \frac{1}{2} H T_1^2 + \ldots \right)_c$

Structure of neutron rich oxygen isotopes

²³Ne

22F

21O

20N

19C

---- $NN + 3N (N^{2}L)$

 $NN + 3N (\Delta)$

14 16

Neutron Number (N)

20

²²Ne

21F

20O

19N

18C

²⁴Ne

23F

22O

21N

20C

²⁵Ne

24F

23O

22N

²⁶Ne

25F

²⁴O

23N

22C

27Ne

26F

²⁸Ne

27F

²⁹Ne

Experimental situation

- "Last" stable oxygen isotope ²⁴O ۲
- ^{25,26}O unstable (Hoffman et al 2008, • Lunderberg et al 2012)
- ²⁸O not seen in experiments •

SDPF-M

USD-B

14 16

Neutron Number (N)

20 8

•

-60

8

3N (A)

14 16

Neutron Number (N)

20 8

³²Ne

31F

280?

³⁰Ne ³¹Ne

29F

Continuum shell model with **HBUSD** interaction predict ²⁸O unbound. A. Volya and V. Zelevinsky PRL (2005)

Shell model (sd shell) with monopole corrections based on threenucleon force predicts 2nd O as last stable isotope of oxygen. [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010), arXiv:0908.2607]

Light nuclei from NNLO-POUNDerS

1.43(8)

NNLO+NNN -8.469 -7.722 -28.417

Experiment -8.482 -7.717 -28.296 1.467(13)

- Rapid Convergence for ground states of oxygen isotopes with NNLO-POUNDerS.
- Already with N =12-14 major harmonic oscillator shells results are well converged.

A. Ekström et al, Phys. Rev. Lett. 110, 192502 (2013)

Oxygen isotopes from NNLO(POUNDerS) A. Ekström et al, Phys. Rev. Lett. 110, 192502 (2013) -90 ^AO -10018 20 22 24 28 26 16 0 -110-10 Shell Model -120-20 € 130 -30 40 ^[1] –140 -50 -60 -150-70 Experiment -160NNLO_{opt} -- $N^{3}LO_{EM}$ -170-18015 22 25 23 24 26 27 28 18 20 2116 19 Α

Excited states in neutron rich oxygen isotopes

resonance or superposition states with J^{π} = 1⁺ to 4⁺.

Long-lived 4⁺ isomer in Fluorine-26

Is ⁵⁴Ca a magic nucleus?

Evolution of shell structure in neutron rich Calcium

- What are the mechanisms responsible for shell closure in ⁴⁸Ca?
- Different models give conflicting result for shell closure in ⁵⁴Ca.

J. D. Holt et al, J. Phys. G 39, 085111 (2012)

- How do shell closures and magic numbers evolve towards the dripline?
- Is the naïve shell model picture valid at the neutron dripline?

Evolution of shell structure in neutron rich Calcium Inversion of shell order in ⁶⁰Ca

Evolution of shell structure in neutron rich Calcium

- Relativistic mean-field show no shell gap in ⁶⁰⁻⁷⁰Ca
- Bunching of singleparticle orbitals
- large deformations and no shell closure
- J. Meng et al, Phys. Rev. C 65, 041302(R) (2002)

How many protons and neutrons can be bound in a nucleus?

Description of observables and model-based extrapolation

- Systematic errors (due to incorrect assumptions/poor modeling)
- Statistical errors (optimization and numerical errors)

Erler et al., Nature 486, 509 (2012)

Calcium isotopes from chiral interactions

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

Is ⁵⁴Ca a magic nucleus? (Is N=34 a magic number?)

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

Spectra and shell evolution in Calcium isotopes

	48 Ca	52 Ca	54 Ca
$E_{2^+}(CC)$	3.58	2.19	1.89
$E_{2^+}(\text{Exp})$	3.83	2.56	n.a.
$E_{4^+}/E_{2^+}(CC)$	1.17	1.80	2.36
$E_{4^+}/E_{2^+}({\rm Exp})$	1.17	n.a.	n.a.
$S_n(CC)$	9.45	6.59	4.59
$S_n(\text{Exp})$	9.95	6.0*	4.0^{\dagger}

New penning trap measurement of masses of ^{51,52}Ca A. T. Gallant et al Phys. Rev. Lett. **109**, 032506 (2012)

	53 Ca		$^{55}\mathrm{Ca}$		61 Ca	
J^{π}	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ
$5/2^{+}$	1.99	1.97	1.63	1.33	1.14	0.62
$9/2^{+}$	4.75	0.28	4.43	0.23	2.19	0.02

Calcium isotopes from NNLO-POUNDerS

Treatment of long-range Coulomb effects

We write the Coulomb interaction

$$V_{\text{Coul}} = U_{\text{Coul}}(r) + [V_{\text{Coul}} - U_{\text{Coul}}(r)]$$

Demanding

$$U_{\text{Coul}}(r) \longrightarrow (Z-1)e^2/r \text{ for } r \to +\infty$$

The second term is short range and can be Expanded in Harmonic Oscillator basis. The first term contain the long range Coulomb part:

$$U_{\text{Coul}}(k,k') = \langle k | U_{\text{Coul}}(r) - \frac{(Z-1)e^2}{r} | k' \rangle + \frac{(Z-1)e^2}{\pi} Q_\ell \left(\frac{k^2 + k'^2}{2kk'} \right)$$

We diagonalize the one-body shcrodinger equation in momentum space using the offdiagonal method **N. Michel Phys. Rev. C 83, 034325 (2011)**

		$s_{1/2}$		$d_{3/2}$		$d_{5/2}$	
N_R	N_T	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ
5	15	1.1054	0.1446	5.0832	1.3519	1.4923	0.0038
5	20	1.1033	0.1483	5.0785	1.3525	1.4873	0.0079
10	25	1.0989	0.1360	5.0765	1.3525	1.4858	0.0093
10	30	1.0986	0.1366	5.0757	1.3529	1.4849	0.0103
15	40	1.0978	0.1351	5.0749	1.3531	1.4842	0.0111
15	50	1.0978	0.1353	5.0746	1.3533	1.4838	0.0114
20	60	1.0976	0.1349	5.0745	1.3533	1.4837	0.0116
30	70	1.0975	0.1346	5.0744	1.3534	1.4837	0.0117
(Mic	chel 2011)	1.0975	0.1346	5.0744	1.3535	1.4836	0.0119

Elastic proton/neutron scattering on 40Ca

G. Hagen and N. Michel, Phys. Rev. C 86, 021602(R) (2012).

The one-nucleon overlap function: $O_A^{A+1}(lj;kr) = \sum_n \left\langle A+1 \mid \mid \tilde{a}_{nlj}^{\dagger} \mid \mid A \right\rangle \phi_{nlj}(r).$

Beyond the range of the nuclear interaction the overlap functions take the form:

$$O_A^{A+1}(lj;kr) = C_{lj} \frac{W_{-\eta,l+1/2}(kr)}{r}, \ k = i\kappa$$

$$O_A^{A+1}(lj;kr) = C_{lj} \left[F_{\ell,\eta}(kr) - \tan \delta_l(k) G_{\ell,\eta}(kr) \right]$$

Elastic proton/neutron scattering on 40Ca

Efimov physics around neutron rich 60Ca

G. Hagen, P. Hagen, H.-W. Hammer, and L. Platter, in preparation (2013).

Efimov physics around neutron rich 60Ca

- Halo EFT provides a model-independent description of halo nuclei
- Core + valence nucleons are effective degrees of freedom
- The coupling constants from the *n*-*n* and core-*n* effective range
- The expansion is given in powers of R/a with R ~ effective range

The Halo EFT core *n*-*n* Lagrangian to leading order:

$$\mathcal{L} = \psi_c^{\dagger} \left(i\partial_0 + \frac{\vec{\nabla}^2}{2M} \right) \psi_c + \vec{\psi}_n^{\dagger} \left(i\partial_0 + \frac{\vec{\nabla}^2}{2m} \right) \vec{\psi}_n \\ + \left(\Delta_{nn} d_{nn}^{\dagger} d_{nn} + \Delta_{cn} d_{cn}^{\dagger} \vec{d}_{cn} + h d_{nn}^{\dagger} \psi_c^{\dagger} \psi_c d_{nn} \\ - \left(g_{cn} \vec{d}_{cn}^{\dagger} \vec{\psi}_n \psi_c + \frac{g_{nn}}{2} d_{nn}^{\dagger} \left(\vec{\psi}_n^{\mathrm{T}} P \, \vec{\psi}_n \right) + \mathrm{h.c} \right] + \dots$$
Three-body coupling

Coupling constants given by *n*-*n* and core-*n* effective ranges

Efimov physics around neutron rich 60Ca

- ²²C is the largest known twoneutron halo R_{rms} ~5.4fm (Tanaka PRL 2010)
- Computed matter radii for ⁶²Ca imply that it has the potential to be the largest and heaviest halo in the chart of nuclei

- For S_{2n} larger than ~ 230keV another state appears in the spectrum
- ⁶²Ca is likely to have an Efimov state (large halo)
- It is conceivable that ⁶²Ca displays an excited Efimov state

Summary

- 1. Optimized interactions from Chiral EFT probed in nuclei
- 2. NNLO (POUNDerS) captures key aspects of nuclear structure, what is the role of 3NF?
- 3. Predict spin and parity of observed resonance peak in ²⁴O.
- 4. Prediction of weak sub-shell closure in ⁵⁴Ca and excited states in ⁵³Ca recently verified by RIKEN.
- 5. Inversion of *gds* levels in neutron rich calcium
- Merging CC and Halo EFT to describe universal properties in systems dominated by large scattering length
- 7. ⁶²Ca displays Efimov phsyics: Excited Efimov states? Largest two-neutron halo?