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Outline

Motivation

Microscopic optical model potentials

R-process nucleosynthesis

Neutron capture on exotic isotopes; surrogate reaction (d,p) stripping

Perturbative calculation of nucleon self-energy

Three-nucleon forces at first and second order

Benchmarking against empirical optical potentials

Necessary input: nucleon-nucleus optical potential

Reliable extrapolation away from the valley of stability
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Many-nucleon structure and many-body methods



  

“Slow'' neutron capture (relative to the timescale of nuclear β-decay)

Relatively low neutron density

Process occurs in normal stellar burning

Produces approximately half of the elements heavier than iron

S-process nucleosynthesis
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Involves ''rapid'' neutron capture to highly neutron-rich nuclei 

β-decay back to the valley of stability

Creates about half of the elements above iron

R-process nucleosynthesis



  

Requires a highly neutron-rich environment

R-process nucleosynthesis sites

Core collapse supernovae

Binary neutron star mergers



  

R-process nucleosynthesis sites

Core collapse supernovae

Binary neutron star mergers

Inputs for numerical simulations: 

Isotope masses

Beta-decay lifetimes

Neutron-capture cross sections

Requires a highly neutron-rich environment
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optical potential

nA

optical potential

“Surrogate reaction” for neutron capture

Effective three-body problem requires VNN ; V
op
pA ; V

op
nA

Treats elastic, breakup, and transfer reactions on equal footing

(d,p) stripping reactions

Neutron capture reactions on neutron-rich isotopes are experimentally unfeasible

U(~r; ~r 0;E) = V (~r;~r 0;E) + iW (~r; ~r 0;E)



  

Phenomenological optical potentials



  

Empirical optical potentials fit to scattering data close to the valley of stability

Extrapolations to reactions on neutron-rich nuclei not well constrained

Microscopic optical potentials have controlled uncertainties

A. Koning et al.  (2003)

Phenomenological optical potentials



  

Successful description of total cross sections, elastic scattering angular
distributions, and analyzing powers

A. Koning et al. (2003)

Comparison to scattering observables



  

SYSTEMATIC EXPANSION in powers of Q=¤Â : Le® = L(2)¼¼ + L(1)¼N + L(2)¼N + L(0)NN + ¢ ¢ ¢
Q = p;m¼

Microscopic approach: nuclear forces from chiral EFT



  

Want to reproduce qualitative features of emirical optical potentials

 Depth of real and imaginary parts 

 Energy dependence

U(q; kf ) = §(q; ! = q2=2M ; kf)

§
(1)

2N (q; kf ) =
X

1

h~q~h1ss1tt1j ¹V2N j~q~h1ss1tt1in1

Hartree-Fock contribution is real, energy independent, nonlocal

Optical potential identified with the nucleon self energy

On-shell approximation

[J. Bell (1959)]

Translationally-invariant systems

§(~r1; ~r2; !)

 In general, nonlocal and energy dependent

§(~r1; ~r2; !)! §(q; !)

Microscopic optical potentials



  

§
(2b)

2N (q; !; kf ) =
1

2

X

123

jh~h1~h3s1s3t1t3j ¹V j~q ~p2ss2tt2ij2
! + ²2 ¡ ²1 + ²3 ¡ i´

n1¹n2n3(2¼)
3±(~h1 + ~h3 ¡ ~q ¡ ~p2)

§
(2a)

2N (q; !; kf ) =
1

2

X

123

jh~p1~p3s1s3t1t3j ¹V j~q~h2ss2tt2ij2
! + ²2 ¡ ²1 ¡ ²3 + i´

¹n1n2¹n3(2¼)
3±(~p1 + ~p3 ¡ ~q ¡ ~h2)

Expressions identical for                        and§
(2a)

2N (q; !; kf ) §
(2c)

2N (q; !; kf )

                                                                and§
(2b)

2N (q; !; kf ) §
(2d)

2N (q; !; kf )

Second-order contribution is complex, non-local, and energy-dependent

Only                        and                        are complex§
(2a)

2N (q; !; kf ) §
(2d)

2N (q; !; kf )

Second-order perturbative contributions
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3N = ¡
X

i6=j 6=k

gAcD

8f4¼¤Â

~¾j ¢ ~qj
~qj
2 +m2

¼

~¾i ¢ ~qj ~¿i ¢ ~¿j

F
®¯
ijk = ±®¯

¡
¡4c1m2

¼ + 2c3~qi ¢ ~qj
¢
+ c4²

®¯°¿
°
k ~¾k ¢ (~qi £ ~qj)

V
(ct)

3N =
X

i6=j 6=k

cE

2f4¼¤Â
~¿i ¢ ~¿j

V
(2¼)

3N =
X

i 6=j 6=k

g2A
8f4¼

~¾i ¢ ~qi ~¾j ¢ ~qj
(~qi

2
+m2

¼)(~qj
2
+m2

¼)
F
®¯
ijk ¿

®
i ¿

¯
j

c1 = ¡0:81; c3 = ¡3:2; c4 = 5:4 [GeV¡1]

cD(2:5 fm
¡1) = ¡0:2

cE(2:5 fm
¡1) = ¡0:205

Leading-order chiral three-nucleon force



  

U(q; kf ) =
g2Am
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Hartree-Fock contribution from three-body forces



  

Term proportional to       nearly independent of the momentum

Most of the repulsive strength arises from the two-pion exchange 3NF

Strong correlation between       and  

cD

cD cE

Momentum dependence of 3NF contributions



  

Term proportional to       nearly independent of the momentum

Most of the repulsive strength arises from the two-pion exchange 3NF

Strong correlation between       and  

cD

cD cE

Momentum dependence of 3NF contributions

cE = ® ¢ cD + const:
® = 0:21§ 0:02

Equivalent 3NF mean field



  

Higher-order perturbative contributions: in-medium NN interactions

q= p '− p¿3¾3~k3

=V3N V medNNV3N

Approximation: On-shell scattering in CM frame  N(~p ) +N (¡~p )! N(~p+ ~q ) +N(¡~p¡ ~q )

V (~p; ~q ) = VC + ~¿1 ¢ ~¿2WC + [VS + ~¿1 ¢ ~¿2WS ]~¾1 ¢ ~¾2 + [VT + ~¿1 ¢ ~¿2WT ]~¾1 ¢ ~q ~¾2 ¢ ~q

+ [VSO + ~¿1 ¢ ~¿2WSO] i(~¾1 + ~¾2) ¢ (~q £ ~p ) + [VQ + ~¿1 ¢ ~¿2WQ] ~¾1 ¢ (~q £ ~p )~¾2 ¢ (~q £ ~p )

form is same as free-space NN interaction

½ = 2k3f=3¼
2Free fermi gas reference state

Sum over occupied states in the Fermi sea



  

Holt, Kaiser, Weise (2009)

Approximates the exact Hartree-Fock results to within ~ 5%

Evaluate in second-order diagrams with two-body forces

Density-dependent NN interactions



  

c E=CcD

p=0.58 k F

p=0.7 k F

®(p; ½) =
ga

8

µ
2¡ 2m

2
¼¡0 + ¡2

¼2½

¶

Weak dependence on k
F
 and p

0

2
≤≤0 0.17≤≤0.20

cD cECorrelation between      and

cD = ¡2:0



  

cE=0.16cD−0.19

c E=CcD

0.17≤≤0.20

P. Navrátil et al., PRL (2007)

cD cECorrelation between      and



  

Contributions from 3NF increase almost linearly with the nuclear density

Three-body forces at second order in perturbation theory weakly attractive 

Contributions to real part of nucleon self-energy



  

 Rafi et al. (2013)

Comparison to previous literature



  

For momenta                the nuclear mean field is essentially constant (small densities)q < kf

Hugenholtz—Van-Hove theorem:                                            (nuclear matter overbound)(E=A)sat ' ¡20MeV

Attractive potential well too deep                                vs.Umc0 = 57MeV U
ph
0 = 52MeV

Total real part of optical potential



  

Density dependence of 3NF contribution



  

Neary symmetric about       (feature assumed in dispersion optical model treatments)kf

Absorptive potential well too deep                                 vs. W
ph
0 = 10¡ 12MeVWmc

0 = 29MeV

Imaginary part of optical potential



  

Finite nuclei through local density approximation:

Isospin asymmetric nuclear matter

Self-consistent single-particle energies:

ULDA(r;E) = UNM (q; kf (r))

 requires point nucleon densities

²q =
q2

2MN

+Re§(q; ²q)

Wph(q; E) =

µ
1 +

MN

q

@U

@q

¶¡1
Wmc(q; E)

 reduces both the real and imaginary parts of the optical potential

 Imaginary part receives additional reduction factor [J. Negele (1981)]

k
p
f ; k

n
f

Future extensions



  

Future extensions

 sensitive to neutrino processes (scattering, absorption and production)

Neutrino mean free path:

1

¸(~ki; T )
=

G2F
32¼3

Z
d3kf [(1 + cos µ)S

(0)(!; ~q; T ) + g2A(3¡ cos µ)S(1)(!; ~q; T )]

Structure factors                       given by the imaginary part of response function

Dynamics of stellar core collapse and evolution of residual neutron star

S(S)(!; ~q; T )

E. Rrapaj, JWH, and S. Reddy, in prog.



  

Summary/Outlook

Understand heavy element formation in r-process nucleosynthesis

Include corrections due to isospin asymmetry

Microscopic optical model potential from chiral two- and
three-nucleon forces

Extend to finite nuclei

FUTURE PROJECTS

Connection to current and future rare-isotope reactions: (d,p)

Neutron matter response functions



  

Convergence in many-body perturbation theory

 Good convergence properties of chiral nuclear interactions with Λ ≤ 500 MeV

Coraggio et al. (2013)

Neutron matter



  

Range of validity

 Chiral nuclear interactions with Λ ≤ 500 MeV are perturbative

 Constrains the allowed projectile energies that can be described

A

p

pA

optical potential

p

 Maximum momentum of nucleons inside nucleus 

 Chiral potential can describe nucleon-nucleus scattering up to 

Emax ' 250MeV

kf ' 250MeV
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