Microscopic optical potential from chiral two- and three-nuclear forces

[JWH, N. Kaiser, G. A. Miller and W. Weise, arXiv:1304.3175]

Jeremy W. Holt

University of Washington

From Few Nucleon Forces to Many-Nucleon Structure ECT*, June 13, 2013

Outline

Motivation

- R-process nucleosynthesis
- Neutron capture on exotic isotopes; surrogate reaction (d,p) stripping

Necessary input: nucleon-nucleus optical potential

Reliable extrapolation away from the valley of stability

Microscopic optical model potentials

- Perturbative calculation of nucleon self-energy
- Three-nucleon forces at first and second order
- Benchmarking against empirical optical potentials

Many-nucleon structure and many-body methods

www.scidacreview.org

S-process nucleosynthesis

- "Slow" neutron capture (relative to the timescale of nuclear β -decay)
- Relatively low neutron density
- Process occurs in normal stellar burning
- Produces approximately half of the elements heavier than iron

z	144Sm STABLE 3.07%	144Sm 145Sm STABLE 340 D 3.07% €: 100.00%		147Sm 1.06E+11 Y 14.99% α: 100.00%	148Sm 7E+15 Y 11.24% g: 100.00%	149Sm STABLE 13.82%	150Sm STABLE 7.38%	β151Sm 90 γ β- 100.00%	152Sm STABLE 26.75%		
				n	v n	y n	v n	y -			
	143Pm 265 D	144Pm 363 D	145Pm 17.7 Y	146Pm 5.53 Y	147Pm 2.0254 Y	148Pm 5.368 D	149Pm 53.08 H	150Pm 2.68 H	151Pm 28.40 H		
61	e: 100.00%	e: 100.00%	ε: 100.00% α: 2.8E-7%	.ε: 66.00% β−: 34.00%	β-: 190.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%		
	142Nd STABLE	143Nd STABLE	144Nd 2.29E+15 Y	145Nd STABLE	146Nd STABLE	0147Nd 10.98 D	148Nd STABLE	149Nd 1.728 H	150Nd 0.79E+19 Y		
60	27.2%	12.2%	23.8% <mark>v:.1</mark> 00.00%	8.3%	17.2%	2 20.00%	5.7%	β-: 100.00%	5.6% 2β-		
		ι,γ n	y n	γ n	γ r r	.Y					
	141Pr STABLE	142Pr 19.12 H	143Pr 13.57 D	144Pr 17.28 M	145Pr 5.984 H	146Pr 24.15 M	147Pr 13.4 M	148Pr 2.29 M	149Pr 2.26 M		
59	100%	γ €: 0.02%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%		
	140Ce STABLE	141Ce 32.508 D	142Ce >5E+16 Y	143Ce 33.039 H	144Ce 284.91 D	145Ce 3.01 M	146Ce 13.52 M	147Ce 56.4 S	148Ce 56 S		
58	88.450%	2.100.00%	11.114% 2β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%		
	n	Y					http://lablemminglounge.blogspot.co				
	82	83	84	85	86	87	88	89	N		

S-process nucleosynthesis

- "Slow" neutron capture (relative to the timescale of nuclear β -decay)
- Relatively low neutron density
- Process occurs in normal stellar burning
- Produces approximately half of the elements heavier than iron

R-process nucleosynthesis

- Involves "rapid" neutron capture to highly neutron-rich nuclei
- β-decay back to the valley of stability
- Creates about half of the elements above iron

z	140Nd	141Nd	142Nd	143Nd	144Nd	145Nd	146Nd	A7Nd B-	148Nd	149Nd	150Nd	151Nd	152Nd	153Nd	154Nd	155Nd	156Nd
	139Pr	140Pr	141Pr	142Pr	143PB	144Pr	3 4 5\$~	146Pr	147Pr	3148Pr	149Pr	3150Pr	151Pr	152Pr	153Pr	154Pr	155Pr
58	138Ce	139Ce	140Ce	141Ce	142Ce	143CB	144C¢	145 Ge	146Cg	147Ce	3 1 48Ce	149Ce	<u>1</u> 50Ce	151Ce	152Ce	153Ce	154Ce
	137La	138La	139La	140La	141La	142L3	<u>1</u> 43Lβ	₹44L₿	-145B	146LB	×47Lβ	- 148La	149La	150La	151La	152La	153La
56	136Ba	137Ba	138Ba	139Ba	140Ba	141Ba	142Ba	143E	144B\$	- 3 ∉5₿å	146B\$	-1 4 78€	148Ba	149Ba	D SOBa	151Ba	152Ba
	135Cs	136Cs	137Cs	138Cs	139Cs	140Cs	141Ce	14203	143Cs	144СВ	-14503	146Cs	3247Cs	148Cs	149Cs 1	150Cs	151Cs Y
54	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe	140Xe	141Xe	142%	143Xe	344Xe	ansxe	146Xe	14XXe			
	133I	134I	135I	136I	137I	138I	139I	140I	1411	×42β-	1431	1,441		Ŷ			
52	132Te	133Te	134Te	135Te	136Te	137Te	138Te	139Te	140Te	141Te	142Te	, htt	p://lable	mminal	ounge.bi	logspot	com/
	80		82		84		86		88		90		92		94	2 1	N

R-process nucleosynthesis sites

Requires a highly neutron-rich environment

Core collapse supernovae

Binary neutron star mergers

R-process nucleosynthesis sites

Requires a highly neutron-rich environment

Core collapse supernovae

Inputs for numerical simulations:

Isotope masses

Beta-decay lifetimes

Neutron-capture cross sections

Binary neutron star mergers

(d,p) stripping reactions

Neutron capture reactions on neutron-rich isotopes are experimentally unfeasible

"Surrogate reaction" for neutron capture

Effective three-body problem requires $V_{NN}, V_{pA}^{op}, V_{nA}^{op}$

Treats elastic, breakup, and transfer reactions on equal footing

Phenomenological optical potentials

$$\mathcal{U}(r, E) = -\mathcal{V}_V(r, E) - i\mathcal{W}_V(r, E) - i\mathcal{W}_D(r, E) + \mathcal{V}_{SO}(r, E).\mathbf{l}.\sigma + i\mathcal{W}_{SO}(r, E).\mathbf{l}.\sigma + \mathcal{V}_C(r),$$

$$V_V(E) = v_1 \Big[1 - v_2 (E - E_f) + v_3 (E - E_f)^2 - v_4 (E - E_f)^3 \Big],$$

$$W_V(E) = w_1 \frac{(E - E_f)^2}{(E - E_f)^2 + (w_2)^2},$$

 $r_V = \text{constant},$

 $a_V = \text{constant},$

Phenomenological optical potentials

Empirical optical potentials fit to scattering data close to the valley of stability Extrapolations to reactions on neutron-rich nuclei not well constrained Microscopic optical potentials have controlled uncertainties

Comparison to scattering observables

Successful description of total cross sections, elastic scattering angular distributions, and analyzing powers

A. Koning et al. (2003)

Microscopic approach: nuclear forces from chiral EFT

SYSTEMATIC EXPANSION in powers of Q/Λ_{χ} : $\mathcal{L}_{eff} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{NN}^{(0)} + \cdots$ $Q = p, m_{\pi}$

Microscopic optical potentials

Want to reproduce qualitative features of emirical optical potentials

- Depth of real and imaginary parts
- Energy dependence

Optical potential identified with the nucleon self energy $\Sigma(\vec{r_1}, \vec{r_2}, \omega)$ [J. Bell (1959)]

In general, nonlocal and energy dependent

Translationally-invariant systems $\Sigma(ec{r_1},ec{r_2},\omega)
ightarrow \Sigma(q,\omega)$

On-shell approximation $U(q,k_f) = \Sigma(q,\omega = q^2/2M;k_f)$

Hartree-Fock contribution is real, energy independent, nonlocal

$$\Sigma_{2N}^{(1)}(q;k_f) = \sum_{1} \langle \vec{q} \, \vec{h}_1 s s_1 t t_1 | \bar{V}_{2N} | \vec{q} \, \vec{h}_1 s s_1 t t_1 \rangle n_1$$

Second-order perturbative contributions

$$\Sigma_{2N}^{(2a)}(q,\omega;k_f) = \frac{1}{2} \sum_{123} \frac{|\langle \vec{p}_1 \vec{p}_3 s_1 s_3 t_1 t_3 | \bar{V} | \vec{q} \, \vec{h}_2 s s_2 t t_2 \rangle|^2}{\omega + \epsilon_2 - \epsilon_1 - \epsilon_3 + i\eta} \bar{n}_1 n_2 \bar{n}_3 (2\pi)^3 \delta(\vec{p}_1 + \vec{p}_3 - \vec{q} - \vec{h}_2)$$

$$\Sigma_{2N}^{(2b)}(q,\omega;k_f) = \frac{1}{2} \sum_{123} \frac{|\langle \vec{h}_1 \vec{h}_3 s_1 s_3 t_1 t_3 | \bar{V} | \vec{q} \, \vec{p}_2 s s_2 t t_2 \rangle|^2}{\omega + \epsilon_2 - \epsilon_1 + \epsilon_3 - i\eta} n_1 \bar{n}_2 n_3 (2\pi)^3 \delta(\vec{h}_1 + \vec{h}_3 - \vec{q} - \vec{p}_2)$$

Expressions identical for $\Sigma_{2N}^{(2a)}(q,\omega;k_f)$ and $\Sigma_{2N}^{(2c)}(q,\omega;k_f)$ $\Sigma_{2N}^{(2b)}(q,\omega;k_f)$ and $\Sigma_{2N}^{(2d)}(q,\omega;k_f)$

Second-order contribution is complex, non-local, and energy-dependent

Only $\Sigma_{2N}^{(2a)}(q,\omega;k_f)$ and $\Sigma_{2N}^{(2d)}(q,\omega;k_f)$ are complex

Leading-order chiral three-nucleon force

$$V_{3N}^{(2\pi)} = \sum_{i \neq j \neq k} \frac{g_A^2}{8f_\pi^4} \frac{\vec{\sigma}_i \cdot \vec{q}_i \vec{\sigma}_j \cdot \vec{q}_j}{(\vec{q}_i^2 + m_\pi^2)(\vec{q}_j^2 + m_\pi^2)} F_{ijk}^{\alpha\beta} \tau_i^{\alpha} \tau_j^{\beta}$$
$$F_{ijk}^{\alpha\beta} = \delta^{\alpha\beta} \left(-4c_1 m_\pi^2 + 2c_3 \vec{q}_i \cdot \vec{q}_j \right) + c_4 \epsilon^{\alpha\beta\gamma} \tau_k^{\gamma} \vec{\sigma}_k \cdot (\vec{q}_i \times \vec{q}_j)$$
$$c_1 = -0.81, \ c_3 = -3.2, \ c_4 = 5.4 \ [\text{GeV}^{-1}]$$

$$\begin{split} V_{3N}^{(1\pi)} &= -\sum_{i \neq j \neq k} \frac{g_A c_D}{8 f_\pi^4 \Lambda_\chi} \frac{\vec{\sigma}_j \cdot \vec{q}_j}{\vec{q}_j^2 + m_\pi^2} \vec{\sigma}_i \cdot \vec{q}_j \, \vec{\tau}_i \cdot \vec{\tau}_j \\ c_D(2.5 \, \text{fm}^{-1}) &= -0.2 \end{split}$$

$$V_{3N}^{(\text{ct})} = \sum_{i \neq j \neq k} \frac{c_E}{2f_\pi^4 \Lambda_\chi} \vec{\tau}_i \cdot \vec{\tau}_j$$
$$c_E(2.5 \,\text{fm}^{-1}) = -0.205$$

Hartree-Fock contribution from three-body forces

$$\begin{split} U(q,k_f) &= \frac{g_A^2 m_\pi^6}{(2\pi f_\pi)^4} \bigg\{ 14(c_3-c_1)u^4 + (3c_1-2c_3)u^2 - 4c_3u^6 + (12c_1-10c_3)u^3 \\ &\times \Big[\arctan 2u + \arctan(u+x) + \arctan(u-x) \Big] + \Big[\frac{c_3}{2}(1+9u^2) - \frac{3c_1}{4}(1+8u^2) \Big] \\ &\times \ln(1+4u^2) + \frac{u^3}{x} \Big[3c_3 - 4c_1 + 2(c_1-c_3)(x^2-u^2) \Big] \ln \frac{1+(u+x)^2}{1+(u-x)^2} \bigg\} \end{split}$$

$$\begin{split} U(q,k_f) &= \frac{g_A^2 m_\pi^6}{(4\pi f_\pi)^4 x^2} \bigg\{ 3c_1 H^2(x,u) + \Big(\frac{c_3}{2} - c_4 \Big) G_S^2(x,u) + (c_3+c_4) G_T^2(x,u) \\ &+ \int_0^u d\xi \Big[6c_1 H(\xi,u) \frac{\partial H(\xi,x)}{\partial x} + (c_3-2c_4) G_S(\xi,u) \frac{\partial G_S(\xi,x)}{\partial x} \\ &+ 2(c_3+c_4) G_T(\xi,u) \frac{\partial G_T(\xi,x)}{\partial x} \Big] \bigg\} \end{split}$$

$$U(q,k_f) = \frac{g_A c_D m_\pi^6}{(2\pi f_\pi)^4 \Lambda_\chi} \left\{ u^6 - \frac{7u^4}{4} + \frac{u^2}{8} - \frac{1+12u^2}{32} \ln(1+4u^2) + u^3 \left[\arctan 2u + \arctan(u+x) + \arctan(u-x) \right] + \frac{u^3}{4x} (x^2 - u^2 - 1) \ln \frac{1+(u+x)^2}{1+(u-x)^2} \right\}$$

$$U(q,k_f)=-rac{c_Ek_f^6}{4\pi^4f_\pi^4\Lambda_\chi}$$

Momentum dependence of 3NF contributions

Most of the repulsive strength arises from the two-pion exchange 3NF

Term proportional to c_D nearly independent of the momentum

Strong correlation between c_D and c_E

Momentum dependence of 3NF contributions

Most of the repulsive strength arises from the two-pion exchange 3NF

Term proportional to c_D nearly independent of the momentum

Strong correlation between c_D and c_E

Higher-order perturbative contributions: in-medium NN interactions

Free fermi gas reference state $ho=2k_f^3/3\pi^2$

Sum over occupied states in the Fermi sea

Approximation: On-shell scattering in CM frame $N(\vec{p}) + N(-\vec{p}) \rightarrow N(\vec{p} + \vec{q}) + N(-\vec{p} - \vec{q})$

$$V(\vec{p}, \vec{q}) = V_C + \vec{\tau}_1 \cdot \vec{\tau}_2 W_C + [V_S + \vec{\tau}_1 \cdot \vec{\tau}_2 W_S] \vec{\sigma}_1 \cdot \vec{\sigma}_2 + [V_T + \vec{\tau}_1 \cdot \vec{\tau}_2 W_T] \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q} + [V_{SO} + \vec{\tau}_1 \cdot \vec{\tau}_2 W_{SO}] i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{p}) + [V_Q + \vec{\tau}_1 \cdot \vec{\tau}_2 W_Q] \vec{\sigma}_1 \cdot (\vec{q} \times \vec{p}) \vec{\sigma}_2 \cdot (\vec{q} \times \vec{p})$$

form is same as free-space NN interaction

Density-dependent NN interactions

Approximates the exact Hartree-Fock results to within $\sim 5\%$

Evaluate in second-order diagrams with two-body forces

Correlation between c_D and c_E

Correlation between c_D and c_E

 $c_E = C + \alpha(\rho) c_D$ $0.17 \le \alpha \le 0.20$

Contributions to real part of nucleon self-energy

Contributions from 3NF increase almost linearly with the nuclear density Three-body forces at second order in perturbation theory weakly attractive

Comparison to previous literature

Total real part of optical potential

For momenta $q < k_f$ the nuclear mean field is essentially constant (small densities) Hugenholtz—Van-Hove theorem: $(E/A)_{\rm sat} \simeq -20 \,{\rm MeV}$ (nuclear matter overbound) Attractive potential well too deep $U_0^{mc} = 57 \,{\rm MeV}$ vs. $U_0^{ph} = 52 \,{\rm MeV}$

Density dependence of 3NF contribution

Imaginary part of optical potential

Neary symmetric about k_f (feature assumed in dispersion optical model treatments) Absorptive potential well too deep $W_0^{mc} = 29 \text{ MeV}$ vs. $W_0^{ph} = 10 - 12 \text{ MeV}$

Future extensions

Finite nuclei through local density approximation:

requires point nucleon densities

 $U_{LDA}(r, E) = U_{NM}(q, k_f(r))$

Self-consistent single-particle energies:

$$\epsilon_q = \frac{q^2}{2M_N} + \operatorname{Re}\Sigma(q,\epsilon_q)$$

- reduces both the real and imaginary parts of the optical potential

- Imaginary part receives additional reduction factor [J. Negele (1981)]

$$W_{ph}(q,E) = \left(1 + \frac{M_N}{q} \frac{\partial U}{\partial q}\right)^{-1} W_{mc}(q,E)$$

Isospin asymmetric nuclear matter k_f^p, k_f^n

Future extensions

Dynamics of stellar core collapse and evolution of residual neutron star

sensitive to neutrino processes (scattering, absorption and production)

Neutrino mean free path:

$$\frac{1}{\lambda(\vec{k}_i,T)} = \frac{G_F^2}{32\pi^3} \int d^3k_f [(1+\cos\theta)S^{(0)}(\omega,\vec{q},T) + g_A^2(3-\cos\theta)S^{(1)}(\omega,\vec{q},T)]$$

Structure factors $S^{(S)}(\omega, \vec{q}, T)$ given by the imaginary part of response function

Summary/Outlook

Understand heavy element formation in *r*-process nucleosynthesis

Connection to current and future rare-isotope reactions: (*d*,*p*)

Microscopic optical model potential from chiral two- and three-nucleon forces

FUTURE PROJECTS

Include corrections due to isospin asymmetry

Extend to finite nuclei

Neutron matter response functions

Convergence in many-body perturbation theory

Good convergence properties of chiral nuclear interactions with $\Lambda \leq 500 \text{ MeV}$

Range of validity

- Chiral nuclear interactions with $\Lambda \leq 500$ MeV are perturbative
- Constrains the allowed projectile energies that can be described

Maximum momentum of nucleons inside nucleus

 $k_f \simeq 250 \,\mathrm{MeV}$

Chiral potential can describe nucleon-nucleus scattering up to

$$E_{\rm max} \simeq 250 \,{\rm MeV}$$