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Motivations The nuclear many-body problem with Skyrme phenomenological

The essential goal of quantum many-body physics is to study the nature and the effects of
interactions between particles as well as the observable properties of many-particle
systems.

The Schrödinger equation that describes the dynamics of a many-body system composed
by A nucleons is given by:

HΨ = (T + V )Ψ = EΨ,

where the Hamiltonian is written as the sum of a kinetic term T and an interaction term
V , that represents in principle a 2-body, 3-body, · · · , up to a A−body force,

H = T + V .

In other words, the Schrödinger equation may be written as:

HΨ =

{
A∑

i=1

−
~2

2m
∇2

i + 2-body+ 3-body+ · · ·+
∑

i1<···<iA

v(i1, · · · , iA)

}

= EΨ,

where i represents all coordinates of the i th nucleon.
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Motivations The nuclear many-body problem with Skyrme phenomenological

From the phenomenological point of view, it turns out that, in most cases, the interaction
is well enough described by the 2-body (and possibly the 3-body) terms, and therefore the
Hamiltonian reduces to:

H ∼
A∑

i=1

−
~2

2m
∇2

i +
1

2

∑

i 6=j=1

V (i , j).

A simple example of a two-body phenomenological interaction in nuclear physics is the
Skyrme effective force (zero-range force) which is given by:

V12(~r , ~R) = t0(1 + x0P
σ)δ(~r ) +

1

2
t1(1 + x1P

σ)
[

δ(~r )~k2 + ~k
′2δ(~r )

]

+t2(1 + x2P
σ)~k

′

· δ(~r )~k +
1

6
t3 (1 + x3P

σ) δ(~r)ρα(~R)

+iW0~σ · ~k
′

× δ(~r )~k.
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Motivations Which nuclei can be treated (EDF framework)?

Which nuclei can be treated? From
medium-mass to heavy nuclei.

Blue region: Energy Density

Functional (EDF) framework (for

example Skyrme forces): Mean-field

framework.

Mean field for ground-state
nuclear structure (HF,
HFB,..)
RPA and QRPA for
small-amplitude oscillations
Beyond small amplitude
oscillations: time-dependent
mean field for dynamics
(TDHF, TDHFB,. . . ).
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Green’s function formalism

The Green’s function, also known as the Feynman propagator is defined as:

G(r , t; r
′

, t
′

) = −i〈Φ0|T
[

Ψ(r , t)Ψ†(r
′

, t
′

)
]

Φ0〉, by assuming 〈Φ0|Φ0〉 = 1.

When t
′

> t , the function G(r , t; r
′

, t
′

) creates a particle at time t and position r , then

destroys it again at time t
′

and position r
′

, in other words, it measures the probability of

a particle propagating from (r , t) to (r
′

, t
′

).

The formula due to Gell-Mann and Low expresses the shift energy of the ground state
with respect to the unperturbed system as:

E − ǫ
(0)
k

=
∞∑

m=0

(−i)m
1

m!

∫ 0

−∞

dt1 · · · dtm 〈Φ0|T
[

Ĥ1Ĥ1(t1) · · · Ĥ1(tm)
]

|Φ0〉connected ,

where the interacting Hamiltonian Ĥ1 can be written as:

H1 =
1

2!

∑

αβα
′

β
′

γµγ
′

µ
′

∫

d3r d3r
′

ψ̂†
α;γ(r)ψ̂

†
β;µ(r

′

)V (r, r
′

)
αα

′

,ββ
′

γγ
′

,µµ
′

ψ̂
β
′
;µ

′ (r
′

)ψ̂
α
′
;γ

′ (r).

Kassem Moghrabi (IPN-Orsay) ECT*-Trento 10-14 June 2013 6 / 40



Green’s function formalism First-order energy diagrams.

The first-order contributions to the total energy is given by:

E (1) = 〈Φ0|T
[

Ĥ1

]

|Φ0〉connected .

The time-ordering can be expressed as:

T
[

ψ̂†
α;γ(r)ψ̂

†
β;µ(r

′

)ψ̂
β
′
;µ

′ (r
′

)ψ̂
α
′
;γ

′ (r)
]

= ψ̂†
α;γ(r) :: ψ̂α

′
;γ

′ (r)ψ̂†
β;µ(r

′

) :: ψ̂
β
′
;µ

′ (r
′

)

−ψ̂†
α;γ(r) :: ψ̂β

′
;µ

′ (r
′

)ψ̂†
β;µ(r

′

) :: ψ̂
α
′
;γ

′ (r).

By noting that: ψ̂a;b(r)ψ̂
†

a
′
;b

′
(r

′

) = iG 0
ab;a

′
b
′
(r, r

′

), we get:

T
[

ψ̂†
α;γ(r)ψ̂

†
β;µ(r

′

)ψ̂
β
′
;µ

′ (r
′

)ψ̂
α
′
;γ

′ (r)
]

= iG 0
α
′
α;γ

′
γ
(r, r)iG 0

β
′
β;µ

′
µ
(r

′

, r
′

)

−iG 0
β
′
α;µ

′
γ
(r

′

, r)iG 0
α
′
β;γ

′
µ
(r, r

′

).

Therefore, we are able to write the first-order energy as a sum of a direct and exchange
part:

E (1) = E
(1)
direct

+ E
(1)
exchange

.
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Green’s function formalism First-order energy diagrams.

The expression for the first-order correction (direct term) is given by:

E
(1)
direct

=
1

2!

∑

αβα
′

β
′

γµγ
′

µ
′

∫

d4r d4r
′

U(r , r
′

)
αα

′

,ββ
′

γγ
′

,µµ
′

[

iG 0
α
′
α;γ

′
γ
(r, r)iG 0

β
′
β;µ

′
µ
(r

′

, r
′

)
]

.

The expression for the first-order correction (exchange term) is given by:

E
(1)
exchange

=
1

2!

∑

αβα
′

β
′

γµγ
′

µ
′

∫

d4r d4r
′

U(r , r
′

)
αα

′

,ββ
′

γγ
′

,µµ
′

[

−iG 0
β
′
α;µ

′
γ
(r

′

, r)iG 0
α
′
β;γ

′
µ
(r, r

′

)
]

.

Mean-field models are described by first-order contributions.

Figure : Left (Right): First-order energy correction direct (exchange) term.
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Some beyond mean-field examples in nuclear physics.

Advantages of mean-field approaches.

In nuclear physics, mean-field approaches lead to satisfactory results when applied to
bulk properties of atomic nuclei.

Masses, radii or ground state deformations.

Mean-field approaches are not always very accurate.

For example, in nuclear physics, mean-field approaches do not predict accurately
the single-particle spectra.

Spectroscopic factors and the fragmentation of the single-particle energies
cannot be reproduced in a precise way.

This why we want to formulate the nuclear many-body problem in a beyond mean-field
framework.
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Some beyond mean-field examples in nuclear physics. Which nuclei can be treated?

Which nuclei can be treated?From
medium-mass to heavy nuclei.

Blue region: Energy Density
Functional (EDF) framework (for
example Skyrme forces): Mean-field
framework.

Beyond-mean-field models.

Particle-Vibration Coupling
(PVC)
Multiparticle-Multihole
Configuration Mixing.

2nd order energy correction.
Second RPA,....etc

What are the problems?
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Some beyond mean-field examples in nuclear physics. Problems

The double counting problem:

1 The first question that one should address before adding correlations is: What are
the many-body correlations that are effectively included implicitly in the mean-field
approach?

2 When one uses phenomenological interactions that are adjusted at the mean-field
level, the problem of the double counting of correlations (that are implicitly
contained to some extent in the parameters) should be addressed.

The problem of ultraviolet divergences:

1 UV divergences may appear for instance when one uses models beyond the
mean-field level with zero-range interactions.

2 For example, UV divergences appears in the so-called Bogoliubov-de Gennes or
Hartree-Fock-Bogoliubov (HFB) theories if a zero-range interaction is employed in
the pairing channel to treat a superfluid many-fermion system.
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Some beyond mean-field examples in nuclear physics. Second-order energy diagrams.

The second-order energy correction is given by:

E (2) = −i

∫ 0

−∞

dt1〈Φ0|T
[

Ĥ1Ĥ1(t1)
]

|Φ0〉connected .

The expectation value of all the terms containing normal-ordered products of operators
vanishes in the non-interacting ground state |Φ0〉, leaving only the fully contracted
products of field operators. We have:

T
[

ψ̂†
a (x)ψ̂

†
b
(y)ψ̂d (y)ψ̂c (x)ψ̂

†
α(z)ψ̂

†
β(w)ψ̂µ(w)ψ̂γ (z)

]

= 24 terms.

Examples of second-order disconnected and anomalous diagrams are:

y

x

z

w

y

x

z

w

y

x

z w

Finally, according to Gold stone’s theorem, the only contributions coming from the
second-order terms are:
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Some beyond mean-field examples in nuclear physics. Second-order energy diagrams.

The expression of the second-order correction due to the direct contribution is given by:

E
(2)
d

=

(
g2

2

)
1

(2π)9

∫

CI

d3p1 d3p2 d3q
V 2(q)

ǫ
(0)
p1 + ǫ

(0)
p2 − ǫ

(0)
p1+q − ǫ

(0)
p2−q

.

x y

zw

Figure : Direct diagram.

Similarly, the expression of the second-order correction due to the exchange contribution is
given by:

E
(2)
exch

= −
(g

2

) 1

(2π)9

∫

CI

d3p1 d3p2 d3q
V (q)V (p1 − p2 − q)

ǫ
(0)
p1 + ǫ

(0)
p2 − ǫ

(0)
p1+q − ǫ

(0)
p2−q

.

x y

zw

Figure : Exchange contribution.
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Applications in nuclear matter A simple Dirac-delta force.

As a first attempt, we use a simple delta force which is spin-independent and we deal with
nuclear matter, where all the calculations may be done analytically:

V (r1, r2) = t0δ(r1 − r2).

We calculate the equation of state for symmetric nuclear matter at the second-order in
perturbation theory.

E

A
(ρ) =

E (0)

A
(ρ) +

E (1)

A
(ρ) +

E (2)

A
(ρ,∞).

Due to the short range character of the interaction, this equation of state diverges. We
use the momentum cutoff Λ procedure to regularize the divergent integrals:

E

A
(ρ,Λ) =

3

10m
k2F +

t0

4π2
k3F −

(
9m

8π4

)

t20 k4F I (kF ,Λ).

I (kF ,Λ) is an analytic function of ρ and Λ and it diverges linearly for large values of the
cutoff Λ:

I (kF ,Λ >> M) =
Λ

9kF
+

−11 + 2 log 2

105
+O

(
kF

Λ

)

.
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Applications in nuclear matter A simple Dirac-delta force.

The asymptotic behaviour of the equation of state for large values of Λ is given by:

E

A
(ρ,Λ >> M) =

3k2
F

10m
+

t0

4π2
k3F −

(
9m

8π4

)

t20 k4F

[
−11 + 2 log 2

105
+

Λ

9kF
+O

(
kF

Λ

)]

.

The terms that depend on the cutoff can be regrouped with the terms coming from the
mean-field contribution:

E

A
(ρ,Λ >> M) =

3k2
F

10m
+

1

4π2
k3F

[

t0 −
mt20

2π2
Λ

]

+

(
9m

8π4

)(
11− 2 log 2

105

)

t20 k4F .

The dependence on the cut-off will be eliminated by defining renormalized parameters tR0
from the bare parameter t0(Λ):

tR0 = t0(Λ) + C2 Λ t20 (Λ) = t0(Λ) [1 + C2 Λ t0(Λ)] such that:
d

dΛ
tR0 = 0.
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Applications in nuclear matter A simple Dirac-delta force.

It is to be noted that:

t0(Λ) = tR0 − C2 Λ t20 (Λ) = tR0 − C2 Λ
(

tR0

)2
+O

(

tR0

)3
;

t20 (Λ) =

[

tR0 − C2 Λ
(

tR0

)2
+O

(

tR0

)3
]2

=
(

tR0

)2
+O

(

tR0

)3
.

Therefore, the equation of state for symmetric matter evaluated at the second-order can
be written as:

E

A
(ρ,Λ >> M) =

3k2
F

10m
+

tR0
4π2

k3F +

(
9m

8π4

)(
11 − 2 log 2

105

)(

tR0

)2
k4F .

We conclude that the problem is renormalized in this case by redefining the parameter t0.

However, this simple model does not provide any saturation point for symmetric matter,
even at the mean-field level.
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Applications in nuclear matter Saturation in nuclear matter.

Calculations of the properties in nuclear matter show that the binding energy is E0 ≈ −16
MeV, and ρ0 ≈ 0.16 fm−3.

Three-body forces are considered as an indispensable ingredient in accurate calculations
not only of few-nucleon systems and the structure of light nuclei but also for many-body
systems in many cases.
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Applications in nuclear matter Saturation in nuclear matter.

We have already concluded that in non-relativistic approaches the model of nucleons
interacting only via a two-body force fails to reproduce the empirical saturation
observables. Thus phenomenological three-body forces have been introduced with few
adjustable parameters.

For example, Skyrme introduced a zero-range force in order to achieve saturation in
nuclear matter:

V123(r1, r2, r3) = t3δ(r1 − r2)δ(r2 − r3).

Later, Vautherin and Brink replaced the contact three-body force by a contact
density-dependent two-body force.

t3δ(r1 − r2)δ(r2 − r3) −→
t3

6
ρα δ(r1 − r2), where α = 1.
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Applications in nuclear matter Inclusion of 2−body density-dependent force (2BDDF).

The next step is to add a zero-range density-dependent force 1
6
t3ρ

αδ(r) to the t0
interaction.

V (r1, r2) =

(

t0 +
t3

6
ρα

)

δ(r1 − r2).

It has to be noted that it corresponds to a three-body force at the mean-field level when
α = 1. The mean-field contribution to the density-dependent term is equal to:

e/A =

(
t3

36π4

)

k6F

Figure : A contact three-body force at first-order.

The density-dependent effective two-body interaction at second order is given by:

Figure : Density-dependent effective two-body interaction to second order.
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Applications in nuclear matter Inclusion of 2−body density-dependent force (2BDDF).

The equation of state for symmetric nuclear matter evaluated at the second-order is given
by:

E

A
(ρ,Λ) =

3k2
F

10m
+

t0

4π2
k3F +

(
t3

36π4

)

k6F −

(
9m

8π4

)(

t0 +
t3

6
ρα

)2

k4F I (kF ,Λ).

Where the expression I (kF ,Λ) is an analytic function of ρ and Λ and it diverges linearly
for large cutoff Λ:

I (kF ,Λ >> M) =
−11 + 2 log 2

105
+

Λ

9kF
+O

(
kF

Λ

)

.

Then, the EoS for symmetric nuclear matter becomes (when α = 1):

E

A
(ρ,Λ >> M) =

3k2
F

10m
+

1

4π2

[

t0 −
mΛ

2π2
t20

]

k3F +
1

36π4

[

t3 −
mΛ

π2
t0t3

]

k6F

+

(
9m

8π4

)(

t0 +
t3

6
ρ

)2 [11 − 2 ln 2

105

]

k4F −

(
mΛ

648π8
t23

)

k9F .

The last term can not be regrouped into the existing parameters unless we add a
four-body term treated perturbatively at the mean-field level.
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Applications in nuclear matter Phenomenological approach.

Since the technique of adding counter-terms will complicate our problem, we will follow a
phenomenological approach by which the divergence is absorbed by adjusting the
parameters of the Skyrme interaction.

In the case of effective interactions between point-nucleons, the cutoff Λ must certainly be
smaller than the momentum associated with the nucleon size, i.e., Λ ≤ 2 fm−1 .

Moreover, the energy scale of low-energy nuclear phenomena in finite nuclei is much
lower. See, for instance:
J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G39 (2012) 125103.

In fact, to describe giant resonances or rotational bands of nuclei, the scale should be
even smaller, perhaps around 0.5 fm−1.

For each value of Λ, we can perform a least-square fit to determine a new parameter set
SkPΛ , such that the EoS including the second-order correction matches the one obtained
with the original force SkP at the mean-field level.
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Applications in nuclear matter Phenomenological approach.

The SkP-equation of state is chosen as our reference on which we perform the fit.
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-1

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32
ρ
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0

E
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  E
/A
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M
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)

SkP

350 fm
-1

(a)

(b)

(fm
-3

)

∆
∆

K. Moghrabi, et al., Phys. Rev. Lett. 105, 262501 (2010).

The quality of the fits demonstrates that the refitted interactions can describe
satisfactorily the empirical equation of state for the case of symmetric nuclear matter
treated with a simplified contact force.
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Applications in nuclear matter Phenomenological approach.

Table : From the second line, columns 2, 3 and 4: parameter sets obtained in the fits associated with different values of the
cutoff Λ compared with the original set SkP (first line). In the fifth column the χ2/N-value (χ2 divided by the number of fitted
points) associated to each fit is shown. In columns 6 and 7 the saturation point is shown.

t0 (MeV fm3) t3 (MeV fm3+3α) α χ2/N ρ0 (fm−3) E/A(ρ0) (MeV)
SkP -2931.70 18708.97 1/6 0.16 -15.95

Λ = 0.5 fm−1 -2352.900 15379.861 0.217 0.00004 0.16 -15.96

Λ = 1 fm−1 -1155.580 9435.246 0.572 0.00142 0.17 -16.11

Λ = 1.5 fm−1 -754.131 8278.251 1.011 0.00106 0.17 -16.09

Λ = 2 fm−1 -632.653 5324.848 0.886 0.00192 0.16 -15.82

Λ = 350 fm−1 -64.904 360.039 0.425 0.00042 0.16 -15.88

For any value of the cutoff Λ , it is possible to find a new refitted interaction that can be
used to take into account the mean-field contribution plus the second-order corrections.
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Full Skyrme interaction

Let us turn our attention to the full Skyrme interaction by including the
velocity-dependent terms:

V12(~r , ~R) = t0(1 + x0P
σ)δ(~r ) +

1

6
t3 (1 + x3P

σ) δ(~r )ρα(~R)

+
1

2
t1(1 + x1P

σ)
[

δ(~r)~k2 + ~k
′2δ(~r )

]

+ t2(1 + x2P
σ)~k

′

· δ(~r )~k

+iW0~σ · ~k
′

× δ(~r )~k.

We calculate analytically the equation of state at second order in both symmetric and
asymmetric nuclear matter with different neutron-to-proton ratios δ.

The equation of state at the mean-field level for asymmetric nuclear matter is given by:

E

A
(δ, ρ) =

3

10m
G5/3k

2
F +

t0

12π2
[2(2 + x0)− (1 + 2x0)G2]k

3
F

+
t3

48

(
2

3π2

)1+α

[2(2 + x3)− (1 + 2x3)G2]k
3+3α
F

+
1

40π2

[

ΘvG5/3 +
1

2
(Θs − 2Θv )G8/3

]

k5F ,

where Gβ = 1
2
[(1 + δ)β + (1 − δ)β ], Θs = 3t1 + t2(5 + 4x2), and

Θv = t1(2 + x1) + t2(2 + x2).
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Full Skyrme interaction

The asymptotic behavior of the second-order energy contribution (Λ >> M) is given by:

∆E (2)

A
(δ, ρ) = k3F

[
a0(δ)Λ + a1(δ)Λ

3 + a2(δ)Λ
5
]
+ k5F

[
b0(δ)Λ + b1(δ)Λ

3
]

+k3+3α
F

[
c1(δ)Λ + c2(δ)Λ

3
]

+k7F [c0(δ)] + k3+6α
F

[c3(δ)Λ] + k5+3α
F

[c4(δ)] .

What counter terms should be added?

1 The first three terms can be regrouped with the mean-field contributions by
redefining some existing parameters.

2 The term k7
F
[c0(δ)] can be absorbed by adding to the original Skyrme interaction

the term: ∇4δ(r1 − r2).
3 The term: k3+6α

F
[c3(δ)Λ] = k9

F
[c3(δ)Λ] (α = 1), corresponds to a four-body force:

δ(r1 − r2)δ(r2 − r3)δ(r3 − r4);
4 Therm k5+3α

F
[c4(δ)] = k8

F
[c4(δ)] corresponds to ∇2δ(r1 − r2)δ(r2 − r3).

Possible directions:

1 Dimensional regularization (DR) with minimal subtraction (MS) scheme.
2 Absorbing the divergence through a fitting procedure.
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Full Skyrme interaction Dimensional regularization with MS.

The first + second–order EoS for symmetric matter is given by

E

A
(kF ) =

3

10m
k2F +

t0

4π2
k3F +

t3

16

(
2

3π2

)1+α

k3+3α
F

+
1

40π2
Θsk

5
F +

∆ES

A
(kF )

The second–order correction is given by:

∆ES

A
(kF ) = k4F

(
−11 + 2 ln 2

105

)

χS
1 (kF ) + k6F

(
−167 + 24 ln 2

945

)

χS
2 (kF )

+k8F

(
−2066 + 312 ln 2

31185

)

χS
3 (kF ) + k8F

(
−9997 + 1236 ln 2

62370

)

χS
4 (kF ).

where all the χ terms depend on the parameters of Skyrme interaction and on the Fermi
momentum kF .
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Full Skyrme interaction Dimensional regularization with MS.
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Figure : SLy5 mean–field EoS (full line) and mean–field + second–order EoS calculated with
the SLy5 parameters (dashed line) for symmetric matter.
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Full Skyrme interaction Dimensional regularization with MS.

The beyond mean–field EoS evaluated at second order for pure neutron matter is given by:

E

A
(kn) =

3

10m
k2n +

1

12π2
t0 (1− x0) k

3
n +

1

24

(
1

3π2

)1+α

(1− x3) t3k
3+3α
n

+
1

40π2
(Θs −Θv ) k

5
n +

∆EN

A
(kn),

This time the second–order correction is given by:

∆EN

A
(kn) = k4n

(
−11 + 2 ln 2

105

)

χN
1 (kn) + k6n

(
−167 + 24 ln 2

2835

)

χN
2 (kn)

+k6n

(
167 − 24 ln 2

5670

)

χN
3 (kn) + k8F

(
461 − 24 ln 2

31185

)

χN
4 (kn)

+k8n

(
−4021 + 516 ln 2

124740

)

χN
5 (kn)
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Full Skyrme interaction Dimensional regularization with MS.
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Figure : SLy5 mean–field EoS (full line) and mean–field + second–order EoS calculated with
the SLy5 parameters (dashed line) for neutron matter.
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Full Skyrme interaction Dimensional regularization with MS.

A problem of double counting! Need to refit the parameters.

The following χ2 is minimized:

χ2 =
1

N − 1

N∑

i=1

(Ei − Ei,ref )
2

∆E2
i

.

1 The number N of fitted points is 15 and the points are in the range of densities
between 0.1 to 0.30 fm−3.

2 The errors ∆Ei are chosen equal to 1% of the reference SLy5 mean-field energies
Ei,ref .

We perform a global fit by considering together symmetric and pure neutron matter. In
this case: χ2 = 1

2

(
χ2
δ=0 + χ2

δ=1

)
.
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Full Skyrme interaction Dimensional regularization with MS.
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K.M et al., Phys. Rev. C 86, 044319 (2012).

Table : Parameter sets obtained in the fit of the EoS of symmetric and pure neutron matter
compared with the original set SLy5. In the last column the χ2 value is shown.

t0 t1 t2 t3 x0 x1 x2 x3 α χ2

(MeV fm3) (MeV fm5) MeV fm5) (MeV fm3+3α)
SLy5 -2484.88 483.13 -549.40 13763.0 0.778 -0.328 -1.0 1.267 0.16667 –
New -460.73 10403.66 -8485.73 -141558.6 1.460 -0.681 -0.641 -0.779 0.650 0.202
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Full Skyrme interaction Cutoff dependence.

It has to be noted that this set of parameters is cutoff-independent which is a good result.

However, the values of the new parameter are far from their orignal values (SLy5) which
may lead to problems of non-convergence at the Hartree-Fock level, when applied to finite
nuclei.

Let us go back to the asymptotic behavior of the second-order energy correction::

∆E (2)

A
(δ, ρ) = k3F

[
a0(δ)Λ + a1(δ)Λ

3 + a2(δ)Λ
5
]
+ k5F

[
b0(δ)Λ + b1(δ)Λ

3
]

+k3+3α
F

[
c1(δ)Λ + c2(δ)Λ

3
]

+k7F [c0(δ)] + k3+6α
F

[c3(δ)Λ] + k5+3α
F

[c4(δ)] .

Adding counter terms to the original Skyrme interaction to suppress the terms in red
would strongly complicate the calculations, especially in the perspective of doing
applications to finite nuclei.

Therefore, we employ a simple procedure and absorb the UV divergences by adjusting the
parameters of Skyrme in order to have a reasonable second-order EoS (as we have already
done for the t0 − t3 model).

Kassem Moghrabi (IPN-Orsay) ECT*-Trento 10-14 June 2013 32 / 40



Full Skyrme interaction Cutoff dependence.

We are dealing with phenomenological interactions where their corresponding parameters
can be adjusted according to which diagrams are explicitly introduced.

To have a reasonable second-order EoS, we have adjusted the nine parameters of the
Skyrme interaction entering in the expression of the EoS to reproduce the reference SLy5
mean-field EoS.

We have chosen 15 equidistant reference points (N) for densities ranging from 0.02 fm−3

to 0.30 fm−3. All the parameters are kept free in the adjustment procedure.

The minimization has been performed using the following definition for the χ2,

χ2 =
1

N − 1

N∑

i=1

(Ei − Ei,ref )
2

∆E2
i

.

The errors or adopted standard deviations, ∆Ei are chosen equal to 1% of the reference
SLy5 mean-field energies Ei,ref .

Kassem Moghrabi (IPN-Orsay) ECT*-Trento 10-14 June 2013 33 / 40



Full Skyrme interaction Cutoff dependence.

K.M et al., Phys. Rev. C 85, 044323 (2012).
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Figure : Refitted EoS (global fit) for symmetric (a), asymmetric (b) and pure neutron (c)
matter. The reference SLy5 mean-field curves are also plotted in the 3 panels (solid lines).
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Full Skyrme interaction Cutoff dependence.

Table : Parameter sets obtained in the fit of the EoS of symmetric, asymmetric and pure
neutron matter for different values of the cutoff Λ compared with the original set SLy5. In the
last column the χ2 values are shown.

t0 t1 t2 t3 x0 x1 x2 x3 α

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)
SLy5 -2484.88 483.13 -549.40 13736.0 0.778 -0.328 -1.0 1.267 0.16667

Λ(fm−1) χ2

0.5 -2022.142 290.312 1499.483 12334.459 0.481 -5.390 -1.304 0.880 0.259 0.411
1.0 -627.078 83.786 -971.384 186.775 3.428 -1.252 -1.620 200.360 0.338 0.540
1.5 -743.227 112.246 -42.816 5269.849 1.013 3.478 -2.114 0.189 0.814 1.733
2.0 -718.397 573.884 -497.766 6179.243 0.391 -0.393 -0.574 0.785 1.051 1.313
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Conclusions and Perspectives

Conclusions/Nuclear Matter

Analytical study of the divergent terms at the second-order in the equation of state of
nuclear matter with Skyrme interaction.

We were not able to remove the divergences by their corresponding adding counter terms

because the problem will become complicated.

1 In the simple case of t0 − t3 model, the divergence was absorbed through a fitting
procedure.

2 In the case of the full interaction: the techniques of DR/MS were introduced. In this
case, a unique set of parameters is obtained for the adjusted effective interaction.

3 The UV divergences were absorbed so that the reference EOS (SLy5) of both
symmetric and nuclear matter with different neutron-to-proton ratio are reproduced
in the case of MC.

Perspectives/ Finite Nuclei

These encouraging results open new prospectives for future applications of this kind of
interactions to treat finite nuclei in beyond mean-field models.

Introduce the coupling between nucleon individual degrees of freedom and collective
degrees of freedom by means of the particle-vibration coupling approach (pvc).

Thanks for your attention!!
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Three-body force at second order

Motivation: Let us see what would happen if we replace the density-dependent term by
the three-body term.

At the first order, they give the same energy contribution. What about the second-order?
Can we renormalize our problem?

The 1st order diagrams generated by a 3−body contact interaction is given by:

Figure : 1st order diagrams generated by a 3−body contact interaction.

The energy contribution is given by:

e/A =

(
t3

36π4

)

k6F .
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Three-body force at second order

The 2ndorder diagrams generated by a 3−body contact interaction is given by:

Figure : 2ndorder diagrams generated by a 3−body contact interaction.

The second-order energy correction due to the three-body force is given by:

E =
k13
F

(2π)15
(t23M)

∫

CI

d3p1 d3p2 d3p3 d3x d3y
1

~x 2 + 3~y 2/4 − H/6 − iǫ
,

where the expression for CI is given by:

CI =
[

1− θ(1− |~p ± ~x − ~y/2|)
][

1− θ(1− |~p + ~y |)
]

θ(1− |~p1|) θ(1− |~p2|) θ(1− |~p3|).

The chosen intermediate variables are: ~p + ~x − ~y/2, ~p + ~y , ~p − ~x − ~y/2, with
~p = (~p1 + ~p2 + ~p3)/3.

The other kinematical quantity H appearing in the energy denominator is the Galilean
invariant:

H =
1

k2
F

[
(~p1 − ~p2)

2 + (~p1 − ~p3)
2 + (~p2 − ~p3)

2
]
< 9.
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Three-body force at second order

We use the techniques of the dimensional regularization (DR) with a power-divergent
subtraction (PDS) scheme because the second-order correction diverges at high momenta.

After analyzing the asymptotic behavior of the scattering amplitude at high momenta, it
becomes straightforward to analyze the divergent parts of the binding energy calculated at
the second-order:

Ediv ∝ k13F δta3

[
1

3− d
+

3

2
− γ

]

− µ2 k11F δtb3

[
1

2− d
− γ

]

+ µ k12F δtc3

[
1

2− d
− γ

]

+ µ4 k9F δt
d
3

[
1

1− d
− γ

]

The terms δta,b,c,d3 are proportional to t23 ; µ is an auxiliary momentum parameter; γ is the
Euler’s constant.

We see that E has poles:

1 at d = 3 which corresponds to a logarithmic divergence (∝ k13
F

ln Λ);
2 at d = 2 which corresponds to a power-divergence (∝ k12

F
Λ and k11

F
Λ);

3 at d = 1 corresponds to a power-divergence (∝ k9
F
Λ4).
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Three-body force at second order

The asymptotic behavior of the second-order energy correction can be written as:

Ediv ∝ k13F δta3

[
1

3− d
+

3

2
− γ

]

︸ ︷︷ ︸

I1

−µ2 k11F δtb3

[
1

2− d
− γ

]

︸ ︷︷ ︸

I2

+µ k12F δtd3

[
1

2− d
− γ

]

︸ ︷︷ ︸

I3

+ µ4 k9F δt
d
3

[
1

1− d
− γ

]

︸ ︷︷ ︸

I4

The last term I4 is proportional to k9
F
. It can be regrouped with the mean-field three-body

contribution.

Counter terms:

1 I1 is suppressed by adding a counter term: δta3∇
2
12δ(r1 − r2)∇2

23δ(r2 − r3);
2 I1 is suppressed by adding a counter term: δtb3∇

2
12δ(r1 − r2)δ(r2 − r3);

3 I1 is suppressed by adding a counter term: δtc3 δ(r1 − r2)δ(r2 − r3)δ(r3 − r4).
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