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Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



The NN interaction from chiral EFT 

•  24 LECs fitted to the np scattering 
data and the deuteron properties 

–  Including ci LECs (i=1-4) from 
pion-nucleon Lagrangian  



•  Improved χ2 fit  
–  Excellent at energies up to 125 MeV 

•  A=3,4 nuclei more bound (closer to experiment) 
•  Better description of p-shell nuclei and O isotopes  
•  Code available for general use 

–  implemented in the NCSM codes  

New developments: NNLO(POUNDerS) NN interaction 
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We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-

leading order (NNLO). The resulting new chiral force NNLOopt yields !
2 ! 1 per degree of freedom for

laboratory energies below approximately 125 MeV. In the A ¼ 3, 4 nucleon systems, the contributions

of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use

NNLOopt to study properties of key nuclei and neutron matter, and we demonstrate that many aspects

of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without explicitly

invoking three-nucleon forces.

DOI: 10.1103/PhysRevLett.110.192502 PACS numbers: 21.30.#x, 21.10.#k, 21.45.#v, 12.39.Fe

Introduction.—Interactions from chiral effective field
theory (EFT) employ symmetries and the pattern of sponta-
neous symmetry breaking of quantum chromodynamics
[1,2]. In this approach, the exchange of pions within chiral
perturbation theory yields the long-ranged contributions
of the nuclear interaction, while short-ranged components
are included as contact terms. The interaction is parame-
trized in terms of low-energy constants (LECs) that are
determined by their fit to experimental data. The interac-
tions from chiral EFT exhibit a power counting in the ratio
Q=!, with Q being the low-momentum scale being probed
and! the cutoff, which is of the order of 1 GeV. At next-to-
next-to-leading order (NNLO), three-nucleon forces (3NFs)
enter, while four-nucleon forces (4NFs) enter at next-to-
next-to-next-to-leading order (N3LO). For laboratory ener-
gies below 125 MeV, the nucleon-nucleon (NN) force
exhibits a quality of fit with !2 ! 10=datum at NNLO
[3], while a high-precision potential N3LOEM, with a
!2 ! 1=datum up to 290 MeV, was obtained by Entem
and Machleidt [4].

The 3NFs at NNLO that accompany the current N3LO
NN potentials play a pivotal role in nuclear structure
calculations [5]. They determine the ground-state spin of
10B [6], correctly set the drip line in oxygen isotopes [7,8],
and make 48Ca a doubly magic nucleus [9,10]. While it
might seem surprising that smaller corrections at NNLO
are so decisive for basic nuclear structure properties, the
3NF contains spin-orbit and tensor contributions that
clearly are important for the currently employed chiral
interactions. The contributions of 3NFs at N3LO have

also been worked out [11,12], and there are on-going
efforts to compute even higher orders [13].
While the quest for higher orders is important, this

approach will result in higher accuracy only if the optimi-
zation at lower orders was carried out accurately. Thus, it is
important and timely to revisit the optimization question.
We note in particular that the fits of the currently employed
chiral interactions [3,4,14] date back about a decade and
that there has been a considerable recent progress in devel-
oping tools for the derivative-free nonlinear least-squares
optimization [15]. Furthermore, the quantification of theo-
retical uncertainties is a long-term objective of nuclear
structure theory, and this requires a covariance analysis
of the interaction parameters with respect to the experi-
mental uncertainties of the nucleon-nucleon elastic scat-
tering observables; see, for example, Refs. [15,16]. This
Letter takes the first step toward this goal. We present a
state-of-the-art optimization of the NN chiral EFT inter-
action at NNLO. This yields a much-improved !2 and a
high-precision NN potential NNLOopt. The 3NF at NNLO
is adjusted to the binding energies in A ¼ 3, 4 nuclei. We
present computations of three-nucleon and four-nucleon
bound states, and we employNNLOopt to ground states and
excited states in 10B, masses and excited states of oxygen
and calcium isotopes, and neutron matter.
Optimizing the NN interaction at NNLO.—For the opti-

mization of the chiral NN interaction we use the Practical
Optimization Using No Derivatives (for Squares) algo-
rithm, POUNDERS [15], as implemented in [17]. This
derivative-free algorithm employs a quadratic model and
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systems. We find that the binding energies of 3H, 3He, and
4He do not uniquely determine cD and cE, and the para-
metric dependence of both LECs is very similar to those
found in previous studies [6,32,33]. Therefore, we choose
cD ¼ "0:2 guided by the triton half life [33] and obtain
cE ¼ "0:36 from optimization to the binding energies.
The resulting point charge radii of 4He are also in good
agreement with experiment; see Table IV.

Performance of NNLOopt for light- and medium-mass

nuclei and neutron matter.—In this Letter, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and

neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions at
N3LO completely fail to describe key aspects of their
structure.
To study the ground state and first excited state in 10B, we

carry out no-core shell model (configuration interaction)
calculations [34] using the bare NNLOopt in model spaces

of up toNmax ¼ 10 harmonic oscillator (HO) shells (10 @!)
above the unperturbed configuration. These model spaces
are not large enough to provide fully converged results for
the ground state and first excited state of 10B. Still, the
variational upper bounds for the energies are "54:35 MeV
for the 1þ state and "54:32 MeV for the 3þ state. The
energies are very close, in contrast toN3LOEM, which yields
a level spacing of about 1.2 MeV between the J! ¼ 1þ

ground state and the J! ¼ 3þ excited state [6].
Chiral NN interactions at N3LO fail to explain the

neutron drip-line in oxygen isotopes, and 3NFs have
been the key element for understanding the structure of
nuclei around 24O [7,8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes and compares
the results from coupled-cluster (CC) computations in the
" triples approximation [35–37]. Our CC calculations
employ a Hartree-Fock basis built from Nmax ¼ 15 HO
shells at @! ¼ 20 MeV. Because of the ‘‘softness’’ of
NNLOopt, this model space is sufficiently large to converge

the ground states and excited states of the nuclei

TABLE III. Scattering lengths a and effective ranges r (both in
fm). The superscripts N and C for the proton-proton observables
refer to nuclear forces and Coulomb-plus-nuclear forces, respec-
tively. BD, rD, QD, and PD denote the deuteron binding energy,
radius, quadrupole moment, and D-state probability, respec-
tively. QD and rD are calculated without meson-exchange cur-
rents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp "7:8188 "7:8174 "7:8196ð26Þ [26]
"7:8149ð29Þ [27]

rCpp 2.795 2.755 2.790(14) [26]
2.769(14) [27]

aNpp "17:083 "17:825
rNpp 2.876 2.817
ann "18:900 "18:889 "18:95ð40Þ [28,29]
rnn 2.838 2.797 2.75(11) [30]
anp "23:732 "23:749 "23:740ð20Þ [24]
rnp 2.725 2.684 2.77(5) [24]
BD (MeV) 2.224 575 2.224 582 2.224 575(9) [24]
rD (fm) 1.975 1.967 1.975 35(85) [31]
QD (fm2) 0.275 0.272 0.2859(3) [24]
PD (%) 4.51 4.05
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FIG. 1 (color online). Computed np phase shifts of the opti-
mized NNLO potential of this work (solid, red line), the NNLO
potential of Ref. [3] (dashed, blue line), and the N3LO potential
[4] (green, dotted line) compared with the Nijmegen phase shift
analysis [18] (solid dots) and the VPI/GWU analysis SM99 [43]
(open circles).

TABLE IV. Ground-state energies (inMeV)andpoint proton radii
(in fm) for 3H, 3He, and 4He using the NNLOopt with and without

the NNLO 3NF interaction for cD ¼ "0:20 and cE ¼ "0:36.

Eð3HÞ Eð3HeÞ Eð4HeÞ rpð4HeÞ
NNLO "8:249 "7:501 "27:759 1.43(8)
NNLO+NNN "8:469 "7:722 "28:417 1.43(8)
Experiment "8:482 "7:717 "28:296 1.467(13)
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FIG. 2 (color online). The ground-state energies of oxygen
isotopes obtained in CC with the NNLOopt and N3LOEM inter-

actions compared with experiment. The inset shows SM results.
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Determination of NNN constants cD and cE  
from the triton binding energy and the half life 

•  Chiral EFT: cD also in the two-nucleon 
contact vertex with an external probe 

•  Calculate  
–  Leading order GT 
–  N2LO: one-pion exchange plus contact 

•  A=3 binding energy constraint:  
     cD=-0.2±0.1 cE =-0.205±0.015 

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory

Doron Gazit
Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Quaglioni and Petr Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

(Received 23 December 2008; published 1 September 2009)

The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.

DOI: 10.1103/PhysRevLett.103.102502 PACS numbers: 21.30."x, 21.45.Ff, 23.40."s, 27.10.+h

The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.

PRL 103, 102502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

0031-9007=09=103(10)=102502(4) 102502-1 ! 2009 The American Physical Society



•  cD-cE fit to 3H/3He binding energy and 3H half life 
(performed with Sofia Quaglioni) 

•  N2LO 3N Λ=500 MeV 
–  cD = -0.39 +/- 0.07, cE = -0.398 +0.015/-0.016 

•  N2LO 3N Λ=400 MeV (Λ=500 MeV in the current)  
–  cD = -0.40 +0.06/-0.07, cE = -0.212 +/-0.015 

 

NNLO(POUNDerS) NN with local N2LO 3N 
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4He    Egs= -28.47(1) MeV   
<V3N-2π> = -6.76 MeV   <V3N-D> = -1.31 MeV   <V3N-E> =  5.72 MeV 

4He    Egs= -29.06(1) MeV   
<V3N-2π> = -3.19 MeV   <V3N-D> = -1.02 MeV   <V3N-E> =  2.35 MeV 

4He with EM N3LO+3NF(500)   Egs= -28.50(2) MeV   
<V3N-2π> = -5.88 MeV   <V3N-D> = -0.22 MeV   <V3N-E> =  1.27 MeV 

E-term 
stronger 

cE re-fit to  
4He b.e. 
useful 



•  cD-cE fit to 3H/3He binding energy and 3H half life 
(performed with Sofia Quaglioni) 

•  N2LO 3N Λ=400 MeV (Λ=500 MeV in the current)  
–  cD = -0.40 +0.06/-0.07, cE = -0.212 +/-0.015 

•  Re-fit of cE to 4He binding energy:  
–  cD=-0.4,  cE=-0.2812 

 

NNLO(POUNDerS) NN with local N2LO 3N 
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4He    Egs= -29.06(1) MeV   
<V3N-2π> = -3.19 MeV   <V3N-D> = -1.02 MeV   <V3N-E> =  2.35 MeV 

4He    Egs= -28.296 MeV   
<V3N-2π> = -2.99 MeV   <V3N-D> = -0.96 MeV   <V3N-E> =  2.96 MeV 

Unlike the  
N3LO NN 
+3NF400, 
where all 
3N terms  
attractive 



The ab initio no-core shell model (NCSM)   

•  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

•  Realistic nuclear Hamiltonian 

–  High-precision nucleon-nucleon potentials 

–  Three-nucleon interactions  

•  Finite harmonic oscillator (HO) basis  

–  A-nucleon HO basis states 

–  complete NmaxhΩ model space 

•  Effective interaction tailored to model-space truncation for NN(+NNN) potentials 

–  Okubo-Lee-Suzuki unitary transformation  

•  Or a sequence of unitary transformations in momentum space: 
–  Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential 

Convergence to exact solution with increasing Nmax 
for bound states. No coupling to continuum.  

A 
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

1max += NN



 4He from chiral EFT interactions:  
g.s. energy convergence 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 

2 4 6 8 10 12 14 16 18 20 22

N
max

−29

−28

−27

−26

−25

−24

E
 [

M
e
V

]

bare (36)

SRG (2.0/28)4
He

NN + NNN

N
3
LO (500 MeV)

Hα =Uα HUα
+ ⇒

dHα

dα
= T,Hα[ ],Hα
"# $% α = 1

λ 4( )

A=3 binding energy and half life constraint 
cD=-0.2, cE=-0.205, Λ=500 MeV 



•  Does an improved NN potential fit at NNLO 
imply a better description of p-shell nuclei? 

10B with the NNLOopt NN potential 
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…but 3N still needed. 

 
The NNLOopt NN predicts (most likely) the 

1+ g.s. in 10B 
 

The N2LO 3N(500) appear rather strong:  
The two lowest 1+ states may be reversed 

 
Next: 

Test the N2LO 3N(400)  
 

Overall very encouraging development! 
 

The extension of the fit to N3LO NN very 
important. 



NCSM calculations of 6He and 7He g.s. energies 
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7He

SRG-N3LO NN
Λ=2.02 fm-1

hΩ=16 MeV

3/2-

0+6He

ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  6He: Egs=-29.25(15) MeV (Expt. -29.269 MeV)  
•  7He: Egs=-28.27(25) MeV (Expt. -28.84(30) MeV) 

•  7He unbound (+0.430(3) MeV), width 0.182(5) MeV 
•  NCSM: no information about the width 

 

7He 

unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.
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•  φ : antisymmetric cluster wave functions  
–  {ξ}: Translationally invariant internal coordinates 

   (Jacobi relative coordinates) 

–  These are known, they are an input 
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+ Âν
ν

∑ φ
1ν



ξ
1ν{ }( )φ2ν



ξ
2ν{ }( )gv (


rv )

+ Âµ
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•  Αν, Αµ : intercluster antisymmetrizers  
–  Antisymmetrize the wave function for exchanges of nucleons between clusters 

–  Example: 
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•  c, g and G: discrete and continuous 
linear variational amplitudes 

–  Unknowns to be determined 
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•  Discrete and continuous set of basis functions 
–  Non-orthogonal 

–  Over-complete  
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•  In practice: function space limited by using 
relatively simple forms of Ψ chosen according to 
physical intuition and energetical arguments 

–  Most common: expansion over binary-cluster basis    
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The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 
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•  Since we are using NCSM wave functions, it is convenient to 
introduce Jacobi channel states in the HO space 

–  The coordinate space channel states are given by 

 

•  We used the closure properties of HO radial wave functions 

–  Target and projectile wave functions are both translational invariant  NCSM eigenstates 
calculated in the Jacobi coordinate basis  
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Âν A− a α

1
I
1

π1T
1
a α

2
I
2

π2T
2( )

(sT )

Y

(r̂A−a,a )







(J
π
T ) δ(r − rA−a,a )

rrA−a,a
∫

ν

∑ r
2
dr

Φνr

J
π
T (Jacobi) channel basis 

Trick #1 



•  Define SD channel states in which the eigenstates of the heaviest of 
the two clusters (target) are described by a SD wave function: 
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•  More in detail: 

•  The spurious motion of the c.m. is mixed with the intrinsic motion 

•  Translational invariance preserved (exactly!) also with SD channels 

•  Transformation is general: same for different A’s or different a’s 
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   Separation into “internal” and “external” regions at the channel radius a 

 

 

–  This is achieved through the Bloch operator: 

–  System of Bloch-Schrödinger equations: 

–  Internal region: expansion on square-integrable Lagrange mesh basis 

–  External region: asymptotic form for large r 
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n-4He scattering: NN vs. NN+NNN interactions 

chiral NN+NNN(500)  
chiral NN+NNN-induced                           
SRG λ=2 fm-1                           
HO Nmax=13, hΩ=20 MeV 

The largest splitting 
between the P-waves 
obtained with the chiral 
NN+NNN interaction 
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How about 7He as n+6He?  

27 
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•  All 6He excited states above 2+
1 broad resonances or states in continuum 

•  Convergence of the NCSM/RGM n+6He calculation slow with number of 6He states 
•  Negative parity states also relevant  
•  Technically not feasible to include more than ~ 5 states 
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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ḡ 1

◆✓
c
�̄

◆

|⇥J⇡T
A � =

X

�

Z
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is obtained from the Hamiltonian kernel
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(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
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i

P̂iA −
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P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(
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ḡ 1

)(

c
χ
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where
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∑
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dr′r′
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2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(
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. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel
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and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel
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2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as
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Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets
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That is, the eigenproblem
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for the orthogonalized NCSMC Hamiltonian
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with the orthogonal wave functions
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2
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. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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The cluster states |A − a α1I
π1
1 T1〉, |a α2I

π2
2 T2〉 and

the A-body states |AλJπT 〉 are obtained by NCSM di-
agonalization of the microscopic Hamiltonians Ĥ(A−a),

Ĥ(a) and Ĥ , for A − a, a and A nucleons respectively,
using the same frequency !ω for the harmonic oscillator
(HO) basis. The size of the NCSM model space is de-
fined by the maximum number Nmax of HO excitation
quanta on top of the lowest configuration and it is the
same for all NCSM eigenstates of the same parity, and
differ by one unit for states of opposite parity. The NC-
SMC basis used in Eq. (1) is then an extension of the
NCSM/RGM basis, by inclusion of a NCSM sector. Or,
equivalently, the NCSM is extended by the inclusion of
clusterized states, which makes the theory able to handle
the scattering physics of the system. In other words, the
coupling of the NCSM with the continuum.

The A-nucleon microscopic Hamiltonian can be writ-
ten in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a) (5)

where T̂rel is the relative kinetic energy between tar-
get and projectile and V̂rel includes all the interactions
between nucleons belonging to different clusters after
subtraction of the average Coulomb interaction between
them (see [17] for a detailed discussion on this point).

B. Kernels in the NCSM/RGM sector

We present here some details of the construction of the
norm and Hamiltonian kernels in the NCSM/RGM sec-
tor. This also represents a necessary introduction to un-
derstand the NCSMC equations and how to solve them.

As the channel states |ΦJπT
νr 〉 are not orthonormal to

each other, it is preferable to couple the NCSM states
|AλJπT 〉 with orthonormalized binary-cluster states

∑

ν′

∫

dr′r′
2 N− 1

2
νν′ (r, r′) Âν′ |ΦJπT

ν′r′ 〉, (6)

where use has been made of the inverse square root of
the NCSM/RGM norm kernel

N JπT
νν′ (r, r′) = 〈ΦJπT

νr |ÂνÂν′ |ΦJπT
ν′r′ 〉. (7)

When computing the above kernel, the “exchange” term
arising from the permutations in Âν that differ from the
identity is obtained by expanding the radial dependence
of the basis states of Eq. 2 on HO radial wave functions
Rnl(r). This HO basis has the same frequency used in
the NCSM cluster calculations. The HO model space is
indicated as P and its size is consistent with the model
space used in the cluster diagonalizations. The expansion
of the channel basis states reads

|ΦJπT
νr 〉 =

∑

n∈P

Rnl(r)|ΦJπT
νn 〉

(8)

with

|ΦJπT
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=
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π2
2 T2〉)(sT ) Y#(r̂A−a,a)

](JπT )

×Rnl(rA−a,a). (9)

Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as
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where we introduced the model-space NCSM/RGM norm
kernel
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νn |P̂A−1,A|ΦJπT
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′).

(11)

The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
model-space kernel plus a correction due to the finite size
of the model space P . One can finally define the square

roots N± 1
2

νν′ (r, r′) as

N± 1
2

νν′ (r, r′) =

[
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where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
onalized basis
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′)

]

+
∑

nn′∈P

Rnl(r)N
± 1

2
νnν′n′Rn′l′(r

′) (12)

where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
onalized basis

Hνν′(r, r′) =

=
∑

µµ′

∫ ∫

dydy′y2y′2N− 1
2

νµ (r, y)Hµµ′ (y, y′)N− 1
2

µ′ν′(y′, r′)(13),r’) 
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4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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APPENDIX A

In this appendix we briefly outline the explicit steps for the derivation of the orthogonalized cluster form factors of
Eq. (25) and (26) and provide their algebraic expressions.

The orthogonalized cluster form factor in r-space representation of Eq. (25) reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn (A1)

=
∑

n∈P

Rn$(r) ḡλνn , (A2)

where the orthogonalized cluster form factor in the model-space is given by the model-space non-orthogonalized cluster
form factor times the model-space norm kernel:

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn =

∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn . (A3)

At the same time, the translational-invariant non-orthogonalized cluster form factors in the model space, gλνn, can
be conveniently derived starting from the Slater-determinant (SD) NCSM eigenstates,

|AλJπT 〉SD = |AλJπT 〉ϕ00(#R(A)
c.m.) , (A4)

and the SD channel states

|ΦJπT
νn 〉SD =

[

(|A − a α1I
π1
1 T1〉SD|a α2I

π2
2 T2〉)(sT ) Y$(R̂

(a)
c.m.)

](JπT )
Rn$(R

(a)
c.m.) , (A5)

and removing the spurious motion of the center of mass. Here, the c.m. coordinates of Eqs. (A4) and (A5) are given
by

#R(A)
c.m. =

1√
A

A
∑

i=1

#ri , #R(a)
c.m. =

1√
a

A
∑

i=A−a+1

#ri , (A6)

and ϕ00(#R(A)
c.m.) is the HO wave function R00(R

(A)
c.m.)Y00(R̂

(A)
c.m.). The resulting expression for the non-orthogonalized

cluster form factor in the single-nucleon projectile (a = 1) basis is:

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈n%00, %|00n%, %〉 1
(A−1)

SD〈AλJπT |ÂνΦJπT
νn 〉SD

=
1

〈n%00, %|00n%, %〉 1
(A−1)

1

Ĵ T̂

∑

j

(−1)I1+J+j ŝĵ

{

I1
1
2 s

% J j

}

SD〈AλJπT |||a†

n$j 1
2
|||A − 1α1I

π1
1 T1〉SD . (A7)

The Moshinsky brackets 〈n%00, %|00n%, %〉 allows us to transform from the SD to the Jacobi-coordinate states. This
expression was first derived in Ref. [36] where further details on the derivation can be found.

The orthogonalized coupling form factor in r-space representation of Eq. (26) reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn + Rnmax+1 $(r)〈AλJπT |ÂνΦJπT

νnmax
〉〈nmax%|T̂rel|nmax + 1 %〉

=
∑

n∈P

Rn$(r)h̄λνn + Rnmax+1 $(r) 〈nmax%|T̂rel|nmax + 1 %〉 gλνnmax
, (A8)



NCSMC formalism 

33 

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets
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.
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That is, the eigenproblem

H
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(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
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HNCSM h̄
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)
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2 , (25)

with the orthogonal wave functions
(
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)
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The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
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2
(Ĥ
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A−a
∑
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P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ
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(

1 ḡ
ḡ 1
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where
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=
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(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities
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The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel
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A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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In the previous expression, we used the relation ḡλν(r) =
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n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
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1 ḡλν′n′
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Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
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define the inverse square root of the NCSMC norm in
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ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Orthogonalization: 

5

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
l (ην ,κνr)−SJπT

νi H+
l (ην ,κνr)], for larger

(28)
for bound and scattering states, respectively. Wl(ην ,κνr)
are Wittaker functions and H±

l (ην ,κνr) are the incom-
ing and outgoing Coulomb functions. The scattering
states are defined through the scattering matrix SJπT

νi be-
tween the initial state i and the channel ν. The function
uJπT

ν (r) stands for either the non-orthogonalized func-
tion χJπT

ν (r) or for the orthogonalized χ̄JπT
ν (r). (note:

plus some detail and then refering to PRC79 and papers
on the subject)

One of the advantages of the R-matrix method is that
the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator

L̂ν =

(

0 0
0 1

2δ(r − a)( d
dr − Bν

r )

)

(29)

and solving the Bloch-Schrödinger equations

(Ĥ + L̂ − E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (30)

H + L̂ is Hermitian when the boundary parameter Bν

is real. Because of the Bloch operator, the wave func-
tion in the right hand side of Eq. 30 is approximated by
its asymptotic behavior. When searching for the bound
states, Bν is chosen in such a way that the r.h.s. vanishes,
and one is left with the diagonalization problem

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (31)

For the scattering states, the R matrix and the scattering
matrix S are computed from the NCSMC/RGM sector of
the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)
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∑
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〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

+Rnmax+1l(r)〈AλJπT |ΦJπT
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〉〈ΦJπT
νnmax

|T̂rel|ΦJπT
νnmax+1

〉

≡
∑

n∈P

Rnl(r)h̄λνn

+ Rnmax+1l(r) 〈nmaxl|T̂rel|nmax+1l〉 gλνnmax

(35)
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ν (r) or for the orthogonalized χ̄JπT
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the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator
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energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.
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ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT
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SD to the Jacobi-coordinate states. The proof of Eq. (34)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
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∑
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∑
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P̂iAĤ)|ΦJπT
ν′r′ 〉.
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See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation
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is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities
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The coupling between the two sectors is described by the
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and by the coupling form factor h̄λν(r) in the Hamilto-
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A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 

Structure of 9Be 
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 
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•  The unnatural parity states are predicted too high in the 
NCSM calculations. Is this a HO basis size problem? Is 
this an interaction dependent problem?   
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 Large HO basis size (Nmax)  
definitely helps. 

 

But…  



•  The unnatural parity states are predicted too high in the 
NCSM calculations. Is this a HO basis size problem? Is 
this an interaction dependent problem?   
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NCSM/RGM for three-body clusters 

NCSM 

Phaseshifts (preliminary results) 

4He(g.s.)+n+n 
Recent exp.: Phys. Lett. B 718 (2012) 441 

INCITE Award – Titan 



Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM   

•  We demonstrated its capabilities in calculations of 7He resonances 

 

•  Outlook: 
–  Inclusion of 3N interactions – first results available for n-4He, p-4He 
–  Extension of the NCSMC formalism to composite projectiles (deuteron, 3H, 3He, 4He) 
–  Extension of the formalism to coupling of three-body clusters (6He ~ 4He+n+n) 

PRL 110, 022505 (2013) 

•  First NCSMC applications to the structure of 9Be 
–  One of the goals: 8Be(n,γ)9Be radiative capture 

•  Exploratory calculations with the new NNLOopt NN 
–  Fits of the 3N LECs 

–  Structure of 10B 
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