

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio calculations of bound and unbound states

From Few-Nucleon Forces to Many-Nucleon Structure ECT* Workshop, Trento 12th June 2013

Petr Navratil | TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienn

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Chiral forces
 - Exploratory calculations with the new NNLO_{opt} NN
- Including the continuum with the resonating group method
 - NCSM/RGM
 - NCSMC
- ⁷He resonances
- ⁹Be structure
- ⁶He as ⁴He-n-n
- Outlook

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. $Entem^{1,2,*}$ and R. Machleidt^{1,†}

Phase Shift (deg)

-10

-20

-30

0

- 24 LECs fitted to the *np* scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian

New developments: NNLO(POUNDerS) NN interaction

PRL 110, 192502 (2013)

PHYSICAL REVIEW LETTERS

week ending 10 MAY 2013

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

A. Ekström,^{1,2} G. Baardsen,¹ C. Forssén,³ G. Hagen,^{4,5} M. Hjorth-Jensen,^{1,2,6} G. R. Jansen,^{4,5} R. Machleidt,⁷ W. Nazarewicz,^{5,4,8} T. Papenbrock,^{5,4} J. Sarich,⁹ and S. M. Wild⁹

- Improved χ^2 fit
 - Excellent at energies up to 125 MeV
- A=3,4 nuclei more bound (closer to experiment)
- Better description of *p*-shell nuclei and O isotopes
- Code available for general use

implemented in the NCSM codes

TABLE IV. Ground-state energies (in MeV) and point proton radii (in fm) for ³H, ³He, and ⁴He using the NNLO_{opt} with and without the NNLO 3NF interaction for $c_D = -0.20$ and $c_E = -0.36$.

	$E(^{3}\mathrm{H})$	$E(^{3}\text{He})$	$E(^{4}\text{He})$	$r_p(^4\text{He})$
NNLO	-8.249	-7.501	-27.759	1.43(8)
NNLO+NNN	-8.469 🗸	-7.722	-28.417	1.43(8)
Experiment	-8.482	-7.717	-28.296	1.467(13)

NCSM ⁴He with NNLO_{opt} E_{gs} =-27.590(1) MeV (EM N³LO NN: -25.38 MeV) ⁴He with NNLO_{opt}+3N E_{gs} =-28.38(1) MeV

Determination of NNN constants c_D and c_E from the triton binding energy and the half life

- **Chiral EFT**: *c*_D also in the two-nucleon contact vertex with an external probe
- Calculate $\langle E_1^A \rangle = |\langle {}^3\text{He}||E_1^A||{}^3\text{H} \rangle|$
 - Leading order GT
 - N²LO: one-pion exchange plus contact
- A=3 binding energy constraint: $c_{\rm D}$ =-0.2±0.1 $c_{\rm E}$ =-0.205±0.015

NNLO(POUNDerS) NN with local N²LO 3N

- $c_{\rm D}$ - $c_{\rm F}$ fit to ³H/³He binding energy and ³H half life (performed with Sofia Quaglioni)
- N²LO 3N Λ=500 MeV

 $-c_{D} = -0.39 + -0.07, c_{F} = -0.398 + 0.015 - 0.016$

⁴He E_{gs} = -28.47(1) MeV <V_{3N-2π}> = -6.76 MeV <V_{3N-D}> = -1.31 MeV <V_{3N-E}> = 5.72 MeV

⁴He with EM N³LO+3NF(500) E_{gs} = -28.50(2) MeV <V_{3N-2π}> = -5.88 MeV <V_{3N-D}> = -0.22 MeV <V_{3N-E}> = 1.27 MeV

• N²LO 3N Λ =400 MeV (Λ =500 MeV in the current) $-c_{D} = -0.40 + 0.06 / -0.07, c_{E} = -0.212 + / -0.015$ c_F re-fit to ⁴He b.e.

⁴He E_{gs} = -29.06(1) MeV <V_{3N-2π}> = -3.19 MeV <V_{3N-D}> = -1.02 MeV <V_{3N-E}> = 2.35 MeV

7

useful

E-term

stronger

NNLO(POUNDerS) NN with local N²LO 3N

- c_D-c_E fit to ³H/³He binding energy and ³H half life (performed with Sofia Quaglioni)
- N²LO 3N Λ =400 MeV (Λ =500 MeV in the current)

 $-c_{\rm D} = -0.40 + 0.06/-0.07, c_{\rm E} = -0.212 + -0.015$

• Re-fit of $c_{\rm E}$ to ⁴He binding energy: - $c_{\rm D}$ =-0.4, $c_{\rm E}$ =-0.2812

 4 He $E_{\rm gs}$ = -28.296 MeV $<\!\!V_{\rm 3N-2\pi}\!\!>$ = -2.99 MeV $<\!\!V_{\rm 3N-D}\!\!>$ = -0.96 MeV $<\!\!V_{\rm 3N-E}\!\!>$ = 2.96 MeV

Unlike the N³LO NN +3NF400, where all 3N terms attractive

The ab initio no-core shell model (NCSM)

- The NCSM is a technique for the solution of the A-nucleon bound-state problem
- Realistic nuclear Hamiltonian
 - High-precision nucleon-nucleon potentials
 - Three-nucleon interactions
- Finite harmonic oscillator (HO) basis
 - A-nucleon HO basis states
 - complete $N_{max}\hbar\Omega$ model space

• Effective interaction tailored to model-space truncation for NN(+NNN) potentials

- Okubo-Lee-Suzuki unitary transformation

• Or a sequence of unitary transformations in momentum space:

- Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential

Convergence to exact solution with increasing N_{max} for bound states. No coupling to continuum.

⁴He from chiral EFT interactions: g.s. energy convergence

¹⁰B with the NNLO_{opt} NN potential

• Does an improved NN potential fit at NNLO imply a better description of *p*-shell nuclei?

NCSM calculations of ⁶He and ⁷He g.s. energies

$E_{\rm g.s.}$ [MeV]	⁴ He	⁶ He	⁷ He
NCSM $N_{\rm max}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- N_{max} convergence OK
 Extrapolation feasible
 - ⁶He: E_{gs}=-29.25(15) MeV (Expt. -29.269 MeV)
 - ⁷He: E_{gs}=-28.27(25) MeV (Expt. -28.84(30) MeV)
- ⁷He unbound (+0.430(3) MeV), width 0.182(5) MeV
 - NCSM: no information about the width

unbound

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} (\{\vec{\xi}_{1\kappa}\}) \qquad (a_{1\kappa} = A)$$

$$(a_{1\kappa} = A)$$

$$\phi_{1\kappa}$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} (\{\vec{\xi}_{1\nu}\}) \phi_{2\nu} (\{\vec{\xi}_{2\nu}\}) g_{\nu}(\vec{r}_{\nu}) \qquad \phi_{1\nu} \phi_{2\nu} (a_{2\nu})$$

$$(a_{1\nu}) (a_{2\nu}) a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\mu} \hat{A}_{\mu} \phi_{1\mu} (\{\vec{\xi}_{1\mu}\}) \phi_{2\mu} (\{\vec{\xi}_{2\mu}\}) \phi_{3\mu} (\{\vec{\xi}_{3\mu}\}) G_{\mu}(\vec{r}_{\mu 1}, \vec{r}_{\mu 2}) \qquad (a_{2\mu}) \phi_{1\mu} \phi_{2\mu} (a_{2\mu}) \phi_{1\mu} (a_{2\mu}) \phi_{3\mu} (a_{2\mu}) \phi_{3\mu}$$

• ϕ : antisymmetric cluster wave functions

- {ξ}: Translationally invariant internal coordinates

(Jacobi relative coordinates)

- These are known, they are an input

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

• A_{ν}, A_{μ} : intercluster antisymmetrizers

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Antisymmetrize the wave function for exchanges of nucleons between clusters

Example:

$$a_{1\nu} = A - 1, \ a_{2\nu} = 1 \implies \hat{A}_{\nu} = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$$

• >

- *c*, *g* and *G*: discrete and continuous linear variational amplitudes
 - Unknowns to be determined

- Discrete and continuous set of basis functions
 - Non-orthogonal
 - Over-complete

Binary cluster wave function

$$\begin{split} \psi^{(A)} &= \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) \\ &+ \sum_{\nu} \int g_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r} \\ &+ \sum_{\mu} \iint G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \ \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2} \\ &+ \cdots \end{split}$$

- In practice: function space limited by using relatively simple forms of Ψ chosen according to physical intuition and energetical arguments
 - Most common: expansion over binary-cluster basis

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{\nu} \int d\vec{r} \, \phi_{\nu}(\vec{r}) \hat{\mathcal{A}} \, \Phi^{(A-a,a)}_{\nu \vec{r}}$

a,a)

$$(A-a) \overrightarrow{r}_{A-a,a} (a)$$
eigenstates of
 $H_{(A-a)}$ and $H_{(a)}$
in the *ab initio*
NCSM basis

Many-body Schrödinger equation:

$$H\Psi^{(A)} = E\Psi^{(A)}$$

$$\downarrow$$

$$\sum_{v} \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu v}(\vec{r}',\vec{r}) - E\mathcal{N}^{(A-a,a)}_{\mu v}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$$
realistic nuclear Hamiltonian
$$\langle \Phi^{(A-a,a)}_{\mu \vec{r}'} | \hat{\mathcal{A}} H \hat{\mathcal{A}} | \Phi^{(A-a,a)}_{v \vec{r}} \rangle$$
Hamiltonian kernel
Norm kernel

How to calculate the NCSM/RGM kernels?

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} r^{2} dr$$

$$\left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \quad \text{(Jacobi) channel basis}$$

 Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle = \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} R_{n\ell}(r_{A-a,a})$$

- The coordinate space channel states are given by

$$\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle$$

Trick #1

• We used the closure properties of HO radial wave functions

$$\frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} = \sum_{n} R_{n\ell}(r) R_{n\ell}(r_{A-a,a})$$

- Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

RIUMF Introduce SD channel states in the HO space

• Define SD channel states in which the eigenstates of the heaviest of the two clusters (target) are described by a SD wave function:

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle_{SD} = \left[\left(\left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle_{SD} \left| a \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell} \left(\hat{R}_{c.m.}^{(a)} \right) \right]^{(J^{\pi}T)} R_{n\ell} \left(R_{c.m.}^{(a)} \right) \\ \left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \varphi_{00} \left(\vec{R}_{c.m.}^{(A-a)} \right) \\ \text{Vector proportional to the c.m. coordinate of the A-a nucleons} \right]^{(sT)} V_{\ell} \left(\hat{R}_{c.m.}^{(a)} \right) \\ \text{Vector proportional to the c.m. coordinate of the A-a nucleons} \left(A - a \right) \left(\vec{n}_{A-a} - a \right) \left(\vec{n}_{A-a} - a \right) \left(\vec{n}_{A-a} - a \right) \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - a \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - a \right) \left(\vec{n}_{A-a} - \sqrt{A-a} - a \right) \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - \sqrt{A-a} - a \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - \sqrt{A-a} - a \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - \sqrt{A-a} - \sqrt{A-a} - a \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - \sqrt{A-a} - \sqrt{A-a} - a \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} - \sqrt{A-a} - \sqrt{A-a} - \sqrt{A-a} - \sqrt{A-a} \right) \\ \vec{n}_{C,m.} \left(\vec{n}_{A-a} - \sqrt{A-a} -$$

ETRIUMF

Translational invariant matrix elements from SD ones

• More in detail:

$$\Phi_{vn}^{J^{\pi}T} \rangle_{SD} = \sum_{n_r \ell_r, NL, J_r} \hat{\ell} \hat{J}_r (-1)^{s+\ell_r+L+J} \left\{ \begin{array}{cc} s & \ell_r & J_r \\ L & J & \ell \end{array} \right\} \langle 00, n\ell, \ell | n_r \ell_r, NL, \ell \rangle_{d=\frac{a}{A-a}} \left[\left| \Phi_{v_r n_r}^{J^{\pi}rT} \right\rangle \varphi_{NL}(\vec{\xi}_0) \right]^{(J^{\pi}T)} \langle D_{v_r n_r}^{J^{\pi}rT} \rangle \langle D_$$

• The spurious motion of the c.m. is mixed with the intrinsic motion

- Translational invariance preserved (exactly!) also with SD channels
- Transformation is general: same for different *A*'s or different *a*'s

Norm kernel (Pauli principle) Single-nucleon projectile

$$N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1)\sum_{n'n} R_{n'\ell'}(r')R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \middle| \hat{P}_{A-1,A} \middle| \Phi_{vn}^{J^{\pi}T} \right\rangle$$
Direct term:
Treated exactly!
(in the full space)
$$V'$$

$$-(A-1) \times \left(a=1\right)$$

$$\frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} = \sum_{n} R_{n\ell}(r)R_{n\ell}(r_{A-a,a})$$

Microscopic *R*-matrix on a Lagrange mesh

Separation into "internal" and "external" regions at the channel radius a

– This is achieved through the Bloch operator:

$$L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)$$

- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on square-integrable Lagrange mesh basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) \underbrace{U_c} O_c(k_c r) \right]$

Bound state

TRIUMF

Scattering state

Scattering matrix

 $u_c(r) = \sum A_{cn} f_n(r)$

 $\{ax_n \in [0,a]\}$

 $\int_0^1 g(x) dx \approx \sum_{n=1}^N \lambda_n g(x_n)$

 $\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{nn'}$

chiral NN+NNN(500) chiral NN+NNN-induced SRG λ =2 fm⁻¹ HO N_{max}=13, hΩ=20 MeV

⁴He g.s. and 6 excited states

29.89	2+,0	
28.37 <u>2839</u> 28.64	28.67	2 ^{+,0}
28.31	1+,0	1-,0
27.42	2+,0	
25, 9 5	17,1	
25,28	07,1	
24.25	17,0	
23.64	1-,1	
23.33	27,1	
21.84	270	
21.01	0,0	
20.21	0,0	p(1
l		

The largest splitting between the P-waves obtained with the chiral NN+NNN interaction

How about ⁷He as *n*+⁶He?

- All ⁶He excited states above 2⁺₁ broad resonances or states in continuum
- Convergence of the NCSM/RGM n+⁶He calculation slow with number of ⁶He states
 - Negative parity states also relevant
 - Technically not feasible to include more than ~ 5 states

New developments: NCSM with continuum

NCSM.

 $\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$

New developments: NCSM with continuum

New developments: NCSM with continuum

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

NCSM sector:

$$(H_{NCSM})_{\lambda\lambda'} = \langle A\lambda J^{\pi}T | \hat{H} | A\lambda' J^{\pi}T \rangle = \varepsilon_{\lambda}^{J^{\pi}T} \delta_{\lambda\lambda'}$$

NCSM/RGM sector:

$$\overline{\mathcal{H}}_{\nu\nu'}(r,r') = \sum_{\mu\mu'} \int \int dy dy' y^2 {y'}^2 \mathcal{N}_{\nu\mu}^{-\frac{1}{2}}(r,y) \mathcal{H}_{\mu\mu'}(y,y') \mathcal{N}_{\mu'\nu'}^{-\frac{1}{2}}(y',r')$$

NCSMC formalism

Start from

$$\begin{bmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{bmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Coupling:
$$\bar{g}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu'} \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$
$$\bar{h}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{H} \hat{\mathcal{A}}_{\nu'} | \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$

Calculation of *g* from SD wave functions:

$$g_{\lambda\nu n} = \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu} \Phi_{\nu n}^{J^{\pi}T} \rangle = \frac{1}{\langle n\ell 00, \ell | 00n\ell, \ell \rangle_{\frac{1}{(A-1)}}} S_{D} \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu} \Phi_{\nu n}^{J^{\pi}T} \rangle_{SD} = \frac{1}{\langle n\ell 00, \ell | 00n\ell, \ell \rangle_{\frac{1}{(A-1)}}} \frac{1}{\hat{J}\hat{T}} \sum_{j} (-1)^{I_{1}+J+j} \hat{s}\hat{j} \left\{ \begin{array}{c} I_{1} & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} S_{D} \langle A\lambda J^{\pi}T || |a_{n\ell j\frac{1}{2}}^{\dagger} || |A - 1\alpha_{1}I_{1}^{\pi_{1}}T_{1} \rangle_{SD}$$
32

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \frac{\mathcal{H}}{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

$$N_{\nu r \nu' r'}^{\lambda \lambda'} = \begin{pmatrix} \delta_{\lambda \lambda'} & \bar{g}_{\lambda \nu'}(r') \\ \bar{g}_{\lambda' \nu}(r) & \delta_{\nu \nu'} \frac{\delta(r-r')}{rr'} \end{pmatrix}$$

Orthogonalization:

$$\overline{H} = N^{-\frac{1}{2}} \begin{pmatrix} H_{NCSM} & \overline{h} \\ \overline{h} & \overline{\mathcal{H}} \end{pmatrix} N^{-\frac{1}{2}} \qquad \begin{pmatrix} \overline{c} \\ \overline{\chi} \end{pmatrix} = N^{+\frac{1}{2}} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Solve with generalized microscopic R-matrix

Bloch operator

$$(\hat{\overline{H}} + \hat{L} - E) \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix} = \hat{L} \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix}$$
$$\stackrel{}{\longrightarrow} \hat{L}_{\nu} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2}\delta(r-a)(\frac{d}{dr} - \frac{B_{\nu}}{r}) \end{pmatrix}$$

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

 The lightest nucleus where the 3N interaction appear to make the description of low lying states worse: Does this suggest our 3N interaction models are wrong?

 The lightest nucleus where the 3N interaction appear to make the description of low lying states worse: Does this suggest our 3N interaction models are wrong?

NCSMC with the 3N under way

For now, we analyze this with the srg-N³LO NN-only:

5/2⁻ a very narrow (or bound) *F*-wave – no shift

1/2⁻ a broader *P*-wave – a large shift due to the continuum

 The lightest nucleus where the 3N interaction appear to make the description of low lying states worse: Does this suggest our 3N interaction models are wrong? No!

 The unnatural parity states are predicted too high in the NCSM calculations. Is this a HO basis size problem? Is this an interaction dependent problem?

Bad with any interaction Large HO basis size (*N*_{max}) definitely helps. But...

 The unnatural parity states are predicted too high in the NCSM calculations. Is this a HO basis size problem? Is this an interaction dependent problem?

NCSM/RGM for three-body clusters

INCITE Award – Titan

Conclusions and Outlook

- Exploratory calculations with the new NNLO_{opt} NN
 - Fits of the 3N LECs
 - Structure of ¹⁰B
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM

PRL 110, 022505 (2013)

- We demonstrated its capabilities in calculations of ⁷He resonances
- First NCSMC applications to the structure of ⁹Be
 - One of the goals: ${}^{8}\text{Be}(n,\gamma){}^{9}\text{Be radiative capture}$
- Outlook:
 - Inclusion of 3N interactions first results available for n-4He, p-4He
 - Extension of the NCSMC formalism to composite projectiles (deuteron, ³H, ³He, ⁴He)
 - Extension of the formalism to coupling of three-body clusters (6 He ~ 4 He+*n*+*n*)

NCSMC and NCSM/RGM collaborators

- Sofia Quaglioni (LLNL)
- Joachim Langhammer, Robert Roth (TU Darmstadt)
- C. Romero-Redondo, F. Raimondi (TRIUMF)
- G. Hupin, M. Kruse (LLNL)
- S. Baroni (ULB)
- W. Horiuchi (Hokkaido)