Towards an Estimation of Nuclear Forces and Nuclear Matrix Elements Uncertainties: Chiral vs Non-Chiral

Rodrigo Navarro Pérez José Enrique Amaro Soriano Enrique Ruiz Arriola

University of Granada Atomic, Molecular and Nuclear Physics Department

From Few-Nucleon Forces to Many-Nucleon Structure ECT*-Trento, 10 Jun 2013 to 14 Jun 2013

References Moti	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
00000000000000						

- Delta Shell Potential 3
- Fitting NN observables 4
- 5 Calculations
- 6 Chiral TPE

References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
•0000000	0000						

References

- [1] Coarse graining Nuclear Interactions ERICE Summer School (Sep-2011) Prog. Part. Nucl. Phys. 67 (2012) 359 [arXiv:1111.4328 [nucl-th]].
- [2] Phenomenological High Precision Neutron-Proton Delta-Shell Potential Phys. Lett. B (2013) to appear, arXiv:1202.2689 [nucl-th].
- [3] Error estimates on Nuclear Binding Energies from Nucleon-Nucleon uncertainties arXiv:1202.6624 [nucl-th].
- [4] Nuclear Binding Energies and NN uncertainties Quark Nuclear Physics (May-2012)
 PoS QNP 2012 (2012) 145 [arXiv:1206.3508 [nucl-th]].
- [5] Effective interactions in the delta-shells potential International IUPAP Conference on Few-Body Problems in Physics, Aug-2012 Few-Body Syst (2013), arXiv:1209.6269 [nucl-th].
- [6] Nucleon-Nucleon Chiral Two Pion Exchange potential vs Coarse grained interactions Chiral Dynamics Aug-2012. arXiv:1301.6949 [nucl-th].
- [7] Partial Wave Analysis of Nucleon-Nucleon Scattering below pion production Phys. Rev. C (2013) to appear, arXiv:1304.0895 [nucl-th].

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000000000000000000000000000000	00000					

Bottomline

THE PROBLEM

- GOAL: Estimate uncertainties from IGNORANCE of NN,3N,4N interaction Reduce computational cost
- Statistical Uncertainties: NN,3N,4N Data Data abundance bias
- Systematic Uncertainties: NN,3N,4N potential Many forms of potentials possible
- Confidence level of Imperfect theories vs Perfect experiments

OUR APPROACH

- Start with NN
- Fit data WITH ERRORS with a simple interaction
- Compare different interactions (AV18,CDBonn,N3LO,Nijm,Spec)
- Estimate uncertainties of Effective Interactions and Matrix elements

Error Analysis in Nuclear Structure

- Theoretical Predictive Power Flow: From light to heavy nuclei
- Experiment much more precise than theory
- How to estimate theoretical errors based on INPUT data

 $INPUT = NN, 3N, \dots \rightarrow OUTPUT = 4N, \dots$

- First Step: INPUT=NN scattering data
- OUTPUT=NN scattering amplitudes

NN-OnLine http://nn-online.org 7 June 2013

NN-OnLine http://nn-online.org 7 June 2013

Wolfenstein Parameters

0000000000 000 00000 0000 0000 0000 00	References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
	00000000	0000						

Introduction

- How much do we need to know light nuclei to predict heavy nuclei ?
- Nucleon size $a \sim 1 \text{fm}$
- Nuclear Force $\sim 1/m_{\pi} = 1.4 \mathrm{fm}$
- Nuclear matter (interparticle distance)

$$\rho_{nm} = 0.17 \text{fm}^{-3} = \frac{1}{(1.8 \text{fm})^3}$$

Fermi Momentum

$$k_F = 270 {\rm MeV} \qquad \lambda_F = \pi/k_F = 2.3 {\rm fm} \gg 1/\sqrt{m_\pi M_N} = 0.5 {\rm fm}$$

Can we ignore explicit core, finite nucleon size and explicit pions ? What is the confidence level for this scenario ?

Quark Cluster Dynamics (qcd)

Atomic analogue. Neutral atoms

- Non-overlapping atoms exchange TWO photons (Van der Waals force)
- Overlapping atoms are not locally neutral; ONE photon exchange is possible (Chemical bonding)

• Overlapping effects (quark exchange) constrain the applicability of Lagrangians

Quark Cluster Dynamics (qcd)

• NN potential in the Born-Oppenheimer approximation

Calle Cordon, RA, '12

$$\bar{V}_{NN,NN}^{1\pi+2\pi+\dots}(\boldsymbol{r}) = V_{NN,NN}^{1\pi}(\boldsymbol{r}) + 2 \; \frac{|V_{NN,N\Delta}^{1\pi}(\boldsymbol{r})|^2}{M_N - M_\Delta} + \frac{1}{2} \; \frac{|V_{NN,\Delta\Delta}^{1\pi}(\boldsymbol{r})|^2}{M_N - M_\Delta} + \mathcal{O}(V^3) \,,$$

- Bulk of TWO-Pion Exchange Chiral forces reproduced
- $\bullet\,$ Finite size effects set in at $2fm \rightarrow$ exchange quark effects become explicit
- High quality potentials confirm these trends.

Errors in Nuclear Matrix Elements

Anatomy of the unknown NN interaction

At what distance look nucleons point-like ?

 $r>2{
m fm}$

When is OPE the ONLY contribution ?

 $r_c > 3 \mathrm{fm}$

• What is the minimal resolution where interaction is elastic ?

$$p_{\rm max} \sim \sqrt{M_N m_\pi} \rightarrow \Delta r = 1/p_{\rm max} = 0.6 {\rm fm}$$

• How many partial waves must be fitted ?

$$l_{\rm max} = p_{\rm max} r_c r_c / \Delta r = 5$$

Minimal distance where centrifugal barrier dominates

$$\frac{l(l+1)}{r_{\min}^2} \le p^2$$

• How many parameters ? (${}^{1}S_{0}, {}^{3}S_{1}$), (${}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$), (${}^{1}D_{2}, {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3}$), (${}^{1}F_{3}, {}^{3}F_{2}, {}^{3}F_{3}, {}^{3}F_{4}$)

 $2 \times 5 + 4 \times 4 + 4 \times 3 + 4 \times 2 + 4 \times 1 = 50$

E. Ruiz Arriola (UGR)

Anatomy of the unknown NN interaction

References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
	0000						

- Study of the NN interaction for over 60 years
- More than 7800 experimental scattering data from 1950 to 2013
- Several partial wave analyses (PWA) and potentials since the 1950's
 - Hamada Johnston, Yale, Paris, Bonn, Nijmegen, Argonne, ...
- $\chi^2/d.o.f. \sim 1$ possible by 1993

[Stoks et al, Phys. Rev. C 48 (1993), 792]

• Chiral potentials appear in the mid 1990's

- No unique determination of the NN interaction
- Different phenomenological potentials
 - Fitted to experimental scattering data
 - High accuracy $\chi^2/{\rm d.o.f.}\sim 1$
 - Dispersion in Phaseshifts
 - OPE as the long range interaction
 - ~ 40 parameters for the short and intermediate range
 - Repulsive core for most of them
 - Short range correlations
- Nuclear structure calculations become complicated
- No statistical uncertainties estimates

References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
00000000	00000						

- Effective coarse graining
 - Oscillator Shell Model
 - Euclidean Lattice EFT
 - $V_{\rm lowk}$ interaction
- Characteristic distance $\sim 0.5-1.0~{\rm fm}$
- Nyquist Theorem
 - Optimal sampling
 - Finite Bandwidth
 - $\Delta r \Delta k \sim 1$
 - de Broglie wavelength of the most energetic particle

References Motivat	tion Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
0000000000000						

COARSE GRAINED INTERACTION

E. Ruiz Arriola (UGR)

Errors in Nuclear Matrix Elements

References Motivation ocoo

Delta Shell Potential

A sum of delta functions

$$V(r) = \sum_{i} \frac{\lambda_i}{2\mu} \delta(r - r_i)$$

[Aviles, Phys.Rev. C6 (1972) 1467]

- Optimal and minimal sampling of the nuclear interaction
- Pion production threshold $\Delta k \sim 2 \text{ fm}^{-1}$
- Optimal sampling, $\Delta r \sim 0.5 \text{fm}$

References Motivation ocoo

Coarse Graining the AV18 potential

Delta Shell Potential

• Comparison with $V_{\rm lowk}$

• Nuclear structure calculations

[Prog.Part.Nucl.Phys. 67 (2012) 359]

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000	00000					

Delta Shell Potential

- 3 well defined regions
- Innermost region $r \leq 0.5 \text{ fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- Intermediate region $0.5 \le r \le 3.0 \text{ fm}$
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization V_{VP} (pp)
 - Magnetic moment V_{MM} (pp and np)

47

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
	00000					

np AND pp PARTIAL WAVE ANALYSIS

Fitting NN observables

🔀 🔞 🖻 💠 🌒 🏥 🗐 9:29 Search
Search NN provider Start
Channel: PP
Observable: all
Energy (MeV): 0 < E < 350
Write to file: ppdata.txt
Output format: separate data 💽
Order by: energy
🧹 Include star (*) data
Minclude excluded data

- Database of NN scattering data obtained till 2013
 - http://nn-online.org/
 - http://gwdac.phys.gwu.edu/
 - NN provider for Android
 - Google Play Store

[J.E. Amaro, R. Navarro-Perez, and E. Ruiz-Arriola]

- 2868 pp data and 4991 np data
- 3σ criterion by Nijmegen to remove possible outliers

Fitting NN observables

• Delta shell potential in every partial wave

$$V_{l,l'}^{JS}(r) = \frac{1}{2\mu_{\alpha\beta}} \sum_{n=1}^{N} (\lambda_n)_{l,l'}^{JS} \delta(r - r_n) \qquad r \le r_c = 3.0 \text{fm}$$

- Strength coefficients λ_n as fit parameters
- Fixed and equidistant concentration radii $\Delta r=0.6~{\rm fm}$
- EM interaction is crucial for pp scattering amplitude

$$V_{C1}(r) = \frac{\alpha'}{r} ,$$

$$V_{C2}(r) \approx -\frac{\alpha \alpha'}{M_p r^2} ,$$

$$V_{VP}(r) = \frac{2\alpha \alpha'}{3\pi r} \int_1^\infty dx \ e^{-2m_e rx} \left[1 + \frac{1}{2x^2}\right] \frac{(x^2 - 1)^{1/2}}{x^2} ,$$

$$V_{MM}(r) = -\frac{\alpha}{4M_p^2 r^3} \left[\mu_p^2 S_{ij} + 2(4\mu_p - 1)\mathbf{L} \cdot \mathbf{S}\right]$$

Scattering Observables

- Comparing with Potentials and Experimental data
- np data

Scattering Observables

- Comparing with Potentials and Experimental data
- pp data

•
$$\chi^2$$
/d.o.f. = 1.06 with $N = 2747|_{pp} + 3691|_{np}$

Phase shifts

- Phase shifts for every partial
- Statistical uncertainty propagated directly from covariance matrix

25 / 47

E. Ruiz Arriola (UGR)

References Motivatio	n Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
0000000000000	00000	0000	0000	000	00000000	000000

Wolfenstein Parameters

- A complete parametrization of the on-shell scattering amplitudes
- Five independent complex quantities
- Function of Energy and Angle

$$\begin{aligned} M(\mathbf{k}_f, \mathbf{k}_i) &= a + m(\sigma_1, \mathbf{n})(\sigma_2, \mathbf{n}) + (g - h)(\sigma_1, \mathbf{m})(\sigma_2, \mathbf{m}) \\ &+ (g + h)(\sigma_1, \mathbf{l})(\sigma_2, \mathbf{l}) + c(\sigma_1 + \sigma_2, \mathbf{n}) \end{aligned}$$

• Scattering observables can be calculated from M

[Bystricky, J. et al, Jour. de Phys. 39.1 (1978) 1]

Delta Shell Potential Fitting NN observables Calculations Chiral TPE Skyrme parameters Shell-Model References Motivation 0000

Wolfenstein Parameters

E. Ruiz Arriola (UGR)

Errors in Nuclear Matrix Elements

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000			0000			

Deuteron Properties

Including Chiral Two Pion Exchange

- Inclusion of χTPE interactions at long and intermediate ranges
- pp PWA by the Nijmegen group

[Rentmeester et al, Phys. Rev. Lett. 82 (1999), 4992]

- ${\, \bullet \,}$ Improvement in the χ^2 value compared to OPE only
- Reduction of the number of parameters
- Determination of chiral constants c_1, c_3, c_4
- Preliminary test using the δ -shell potential
 - OPE, TPE(I.o.) and TPE(s.o.)
 - Different cut radius, $r_c =$ 3.0, 2.4, 1.8fm

Comparing OPE and χ TPE

• Fitting all NN data

r_c [fm]	1.8		2.4		3.0	
	$N_{\rm p}$;	χ^2/ν	$N_{\rm P}$	χ^2/ u	$N_{ m p}$	χ^2/ν
OPE	31 1	L.80	39	1.56	46	1.54
TPE(I.o.)	31 1	l.72	38	1.56	46	1.52
TPE(s.o.)	30+3 1	L.60	38+3	1.56	46+3	1.52

• Fitting 3σ compatible NN data

	N_{Data}	$N_{\rm p}$	χ^2/ u	N_{Data}	$N_{\rm P}$	χ^2/ u	N_{Data}	$N_{\rm P}$	χ^2/ u
OPE	5766	31	1.10	6363	39	1.09	6438	46	1.06
TPE(I.o.)	5841	31	1.10	6432	38	1.10	6423	46	1.06
TPE(s.o.)	6220	30+3	1.07	6439	38+3	1.10	6422	46+3	1.06

- OPE only at 3.0fm describes the data
- $1.8 \le r \le 3.0 {
 m fm}$ OPE + something else
- χTPE most of that something else

References M	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000				000		

EFFECTIVE INTERACTIONS

E. Ruiz Arriola (UGR)

Errors in Nuclear Matrix Elements

References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
						●00000000	

- Effective Interaction [Skyrme, Moshinsky]
- Useful simplifications in many body calculations [Brink, Vaughterin]
- Power expansion in CM momenta

$$\begin{split} V(\mathbf{p}',\mathbf{p}) &= \int d^3 x e^{-i\mathbf{x}\cdot(\mathbf{p}'-\mathbf{p})} \hat{V}(\mathbf{x}) \\ &= t_0 (1+x_0 P_\sigma) + \frac{t_1}{2} (1+x_1 P_\sigma) (\mathbf{p}'^2 + \mathbf{p}^2) \\ &+ t_2 (1+x_2 P_\sigma) \mathbf{p}' \cdot \mathbf{p} + 2it_V \mathbf{S} \cdot (\mathbf{p}' \wedge \mathbf{p}) \\ &+ \frac{t_T}{2} \left[\sigma_1 \cdot \mathbf{p} \sigma_2 \cdot \mathbf{p} + \sigma_1 \cdot \mathbf{p}' \sigma_2 \cdot \mathbf{p}' - \frac{1}{3} \sigma_1 \sigma_2 (\mathbf{p}'^2 + \mathbf{p}^2) \right] \\ &+ \frac{t_U}{2} \left[\sigma_1 \cdot \mathbf{p} \sigma_2 \cdot \mathbf{p}' + \sigma_1 \cdot \mathbf{p}' \sigma_2 \cdot \mathbf{p} - \frac{2}{3} \sigma_1 \sigma_2 \mathbf{p}' \cdot \mathbf{p} \right] \\ &+ \mathcal{O}(p^4) \end{split}$$

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000					00000000	

- Skyrme parameters in terms of paratial waves
- Partial Wave potential in momentum space

$$V_{l'l'}^{JS}(p',p) = \frac{(4\pi)^2}{M} \int_0^\infty dr r^2 j_{l'}(p'r) j_l(pr) V_{l'l}^{JS}(r) dr r^2 j_{l'}(p'r) dr r^2 j$$

• Using the Bessel function expansion

$$j_l(x) = \frac{x^l}{(2l+1)!!} \left[1 - \frac{x^2}{2(2l+3)} + \cdots \right]$$

References M	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
00000000	0000					00000000	

• Comparing similar terms

$$\begin{array}{lll} (t_0, x_0 t_0) & = & \displaystyle \frac{1}{2} \int d^3 x \left[V_{^3S_1}(r) \pm V_{^1S_0}(r) \right] \\ (t_1, x_1 t_1) & = & \displaystyle -\frac{1}{12} \int d^3 x r^2 \left[V_{^3S_1}(r) \pm V_{^1S_0}(r) \right] \\ (t_2, x_2 t_2) & = & \displaystyle \frac{1}{54} \int d^3 x r^2 \left[V_{^3P_0}(r) + 3 V_{^3P_1}(r) + 5 V_{^3P_2}(r) \pm 9 V_{^1P_1}(r) \right] \\ t_V & = & \displaystyle \frac{1}{72} \int d^3 x r^2 \left[2 V_{^3P_0}(r) + 3 V_{^3P_1}(r) - 5 V_{^3P_2}(r) \right] \\ t_U & = & \displaystyle \frac{1}{36} \int d^3 x r^2 \left[-2 V_{^3P_0}(r) + 3 V_{^3P_1}(r) - V_{^3P_2}(r) \right] \\ t_T & = & \displaystyle \frac{1}{5\sqrt{2}} \int d^3 x r^2 V_{\epsilon_1}(r) \end{array}$$

References Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
0000000000000					00000000	

• Straightforward for δ -shell potential

$$t \propto \sum \tilde{\lambda}_i r_i^n$$

• Integrable for OPE starting at $r_{\rm c}$

$$t \propto \frac{f_{\pi NN}^2}{m_{\pi}^2} \Gamma(n, m_{\pi} r_{\rm c})$$

• Where
$$f_{\pi NN}^2/(4\pi) \sim 0.08$$

Skyrme parameters fitting at different energy ranges

References Motiva	ion Delta Shell P	otential Fitting NN observ	vables Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000000000000000000000000000000					000000000	

Skyrme parameters fitting at different energy ranges

References Motivat	ion Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
000000000000000000000000000000000000000					000000000	

• Fermi type shape density

$$\rho(x) = \frac{\rho_0}{1 + e^{(r-R)/a}}$$

•
$$R = r_0 A^{1/3}$$
, $r_0 = 1.1$ fm and $a = 0.7$ fm

• Error band for stable nuclei binding energy

$$\frac{\Delta B}{A} = \frac{3}{8A} \Delta t_0 \int d^3 x \, \rho(x)^2$$

Skyrme Parameters

- Nuclear and Neutron matter
 - Error grows linearly with the density

$$\frac{\Delta B_{n.m.}}{A} = \frac{3}{8} \Delta t_0 \rho \sim 3.75 \rho$$
$$\frac{\Delta B_n}{A} = \frac{1}{4} \Delta [t_0 (1 - x_0)] \rho_n \sim 3.5 \rho_n$$

References M	lotivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
00000000						00000000	

SHELL MODEL MATRIX ELEMENTS

E. Ruiz Arriola (UGR)

Errors in Nuclear Matrix Elements

Renormalization of Nuclear Matrix elements

Harmonic oscillator shell model

$$V_{\rm HO}(r) = \frac{r^2}{2Mb^4} \to \epsilon_{nl} = \frac{1}{2Mb^2} (4n + 2l - 1)$$

• Distortion due to OPE and TPE \rightarrow Energy shift $\Delta \epsilon_{nl}$

 $\Delta \epsilon_{nl} = \langle \varphi_{nl} | K(\epsilon_{nl} + \Delta \epsilon_{nl}) | \varphi_{nl} \rangle$

In order to see the differences we need to look into short distances.

Errors in Nuclear Matrix elements

Errors in Nuclear Matrix elements

Errors in Nuclear Matrix elements

Errors in Nuclear Matrix elements

References Mo	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model
0000000000						00000

CONCLUSIONS

E. Ruiz Arriola (UGR)

Errors in Nuclear Matrix Elements

References	Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Skyrme parameters	Shell-Model

Summary

• Sampling of the NN interaction by a delta shell potential

$$1/\sqrt{m_{\pi}M} \lesssim \Delta r \lesssim 1/m_{\pi}$$

- $\bullet~$ Quantitative comparison of OPE and Chiral TPE \rightarrow Reduccion of Parameters
- Statistical uncertainty propagation possible
- δ -shell representation allows straightforward calculations
- Comparing OPE and χ TPE matrix elements with errors
- TAKE AWAY: Before cranking the machine accuracy make sure it does not exceed theoretical uncertainty

47