Nuclear forces and neutron-rich systems

Achim Schwenk

From few-nucleon forces to many-nucleon structure ECT*, Trento, June 11, 2013

ARCHES

Bundesministerium für Bildung und Forschung

Award for Research Cooperation and High Excellence in Science

Outline

Chiral EFT and many-body forces

Neutron-rich nuclei and 3N forces

Neutron matter from chiral EFT interactions

need for nonperturbative benchmark, which parts of chiral EFT interactions are perturbative?

QMC calculations with chiral EFT interactions

Dark matter response of nuclei

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...

The oxygen anomaly Otsuka et al. (2010)

New ab-initio methods extend reach

impact of 3N forces confirmed in large-space calculations: Coupled Cluster theory with phenomenological 3N forces Hagen et al. (2012) In-Medium Similarity RG based on chiral NN+3N Hergert et al. (2013) Green's function methods based on chiral NN+3N Cipollone et al. (2013)

Three-body forces and magic numbers

new ^{51,52}Ca TITAN measurements

⁵²Ca is 1.75 MeV more bound compared to atomic mass evaluation Gallant et al. (2012)

behavior of 2n separation energy S_{2n} agrees with NN+3N predictions

3N forces and proton-rich nuclei Holt, Menendez, AS (2013) first results with 3N forces for ground and excited states of N=8, 20

Chiral effective field theory for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...

Neutron matter from chiral EFT interactions

direct calculations without RG/SRG evolution, 3N to N²LO only

Measure of convergence and C_T values

N ³ LO NN potential	$ \Delta E_{ m NN-only}^{(2/3)} $	$ \Delta E^{(2/3)}_{ m NN/3N} $	$C_S[{ m fm}^2]$	$C_T [{ m fm}^2]$
${ m EGM}~450/500~{ m MeV}$	$0.8{ m MeV}$	$0.6\mathrm{MeV}$	-4.19	-0.45
${ m EGM}~450/700~{ m MeV}$	$0.4{ m MeV}$	$0.4{ m MeV}$	-4.71	-0.24
EM 500 MeV	$1.1{ m MeV}$	$1.7{ m MeV}$	-3.90	0.22
$\overline{\mathrm{EGM}~550/600~\mathrm{MeV}}$	$1.0{ m MeV}$	$3.1{ m MeV}$	-1.24	0.36
EGM $600/600$ MeV	$0.2{ m MeV}$	$1.5{ m MeV}$	3.45	2.07
EGM $600/700~{\rm MeV}$	$11.4\mathrm{MeV}$	$16.1{ m MeV}$	1.31	1.00
EM 600 MeV	$7.7{ m MeV}$	$9.1\mathrm{MeV}$	-3.88	0.28

0.15

consider all NN interactions with good convergence pattern and small C_T

N³LO 3N and 4N interactions in neutron matter

evaluated at Hartree-Fock level

Complete N³LO calculation of neutron matter

first complete N³LO result, Hartree-Fock +2nd order +3rd order (pp+hh) includes uncertainties from NN, 3N (dominates), 4N

$N^{2}LO vs. N^{3}LO 3N$

Comparisons to equations of state in astrophysics

many equations of state used in supernova simulations not consistent with neutron matter results

Impact on neutron stars Hebeler, Lattimer, Pethick, AS (2010, 2013) constrain high-density EOS by causality, require to support 1.97 M_{sun} star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

predicts neutron star radius: 9.7-13.9 km for M=1.4 M_{sun} (±18% !)

Neutron-star mergers and gravitational waves

explore sensitivity to neutron-rich matter in neutron-star merger and gw signal Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012).

Fig. 1: Various snapshots of the collision of two neutron stars initially revolving around each other. The sequence simulated by the computer covers only 0.03 seconds. The two stars orbit each other counterclockwise (top left) and quickly come closer (top right). Finally they collide (centre left), merge (centre right), and form a dense, superheavy neutron star (bottom). Strong vibrations of the collision remnant are noticeable as deformations in east-west direction and in north-south direction (bottom panels). (Simulation: Andreas Bauswein and H.-Thomas Janka/MPA)

Symmetry energy and pressure of neutron matter

neutron matter band predicts symmetry energy S_v and its density derivative L

comparison to experimental and observational constraints Lattimer, Lim (2012)

neutron matter constraints H: Hebeler et al. (2010) and in prep.

G: Gandolfi et al. (2011)

microscopic calculations provide tight constraints!

Neutron skin of ²⁰⁸Pb

probes neutron matter energy/pressure, neutron matter band predicts neutron skin of ²⁰⁸Pb: 0.17±0.03 fm (±18% !) Hebeler et al. (2010)

week ending 5 AUGUST 2011

16 MARCH 2013

in excellent agreement with extraction from complete E1 response 0.156+0.025-0.021 fm PRL 107, 062502 (2011) PHYSICAL REVIEW LETTERS

Complete Electric Dipole Response and the Neutron Skin in ²⁰⁸Pb

A benchmark experiment on ²⁰⁸Pb shows that polarized proton inelastic scattering at very forward angles including 0° is a powerful tool for high-resolution studies of electric dipole (*E*1) and spin magnetic dipole (*M*1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted *E*1 polarizability leads to a neutron skin thickness $r_{skin} = 0.156^{+0.025}_{-0.021}$ fm in ²⁰⁸Pb derived within

PREX: neutron skin from parity-violating electron-scattering at JLAB electron exchanges Z-boson, couples preferentially to neutrons

PRL 108, 112502 (2012)

goal II: ±0.06 fm

Measurement of the Neutron Radius of ²⁰⁸Pb through Parity Violation in Electron Scattering

PHYSICAL REVIEW LETTERS

We report the first measurement of the parity-violating asymmetry $A_{\rm PV}$ in the elastic scattering of polarized electrons from ²⁰⁸Pb. $A_{\rm PV}$ is sensitive to the radius of the neutron distribution (R_n). The result $A_{\rm PV} = 0.656 \pm 0.060(\text{stat}) \pm 0.014(\text{syst})$ ppm corresponds to a difference between the radii of the neutron and proton distributions $R_n - R_p = 0.33^{+0.16}_{-0.18}$ fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

QMC with chiral EFT interactions - challenges

EFT includes nonlocal interactions

caused by usual regulator on relative momenta

and k-dependent contact interactions k=mom. transfer in exchange channel

pion exchanges to N²LO local except for regulator

strategies so far: try directly in QMC Lynn, Schmidt

separate local + nonlocal parts and treat nonlocal perturbatively Furnstahl, Wendt

Local chiral EFT interactions

keep pion exchanges to N²LO local regulate in coordinate space $f_{long}(r) = 1 - e^{-(r/R_0)^4}$

construct local contact interactions $C_S + C_T \sigma_1 \cdot \sigma_2$

with regulator on momentum transfer $\int \frac{d\mathbf{q}}{(2\pi)^3} C_{S,T} f_{\text{local}}(q^2) e^{i\mathbf{q}\cdot\mathbf{r}} = C_{S,T} \frac{e^{-(r/R_0)^4}}{\pi\Gamma(\frac{3}{4})R_0^3}$

at NLO use freedom to treat k² operators for isospin dependence

$$egin{aligned} V^{ ext{NLO}}_{ ext{short}} &= C_1\,q^2 + C_2\,q^2\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2 \ &+ ig(C_3\,q^2 + C_4\,q^2\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2ig)\,oldsymbol{\sigma}_1\cdotoldsymbol{\sigma}_2 \ &+ i\,rac{C_5}{2}\,(oldsymbol{\sigma}_1+oldsymbol{\sigma}_2ig)\cdotoldsymbol{ au} imesoldsymbol{ au}_k \ &+ C_6\,(oldsymbol{\sigma}_1\cdotoldsymbol{ au})(oldsymbol{\sigma}_2\cdotoldsymbol{ au}) \ &+ C_7\,(oldsymbol{\sigma}_1\cdotoldsymbol{ au})(oldsymbol{\sigma}_2\cdotoldsymbol{ au})\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2\,, \end{aligned}$$

M. Freunek, Diploma Thesis (2007)

TABLE I. Short-range couplings for $R_0 = 1.2$ fm at LO, NLO, and N²LO (with a spectral-function cutoff $\tilde{\Lambda} = 800$ MeV) [30]. The couplings C_{1-7} are given in fm⁴ while the rest are in fm².

	LO	NLO	$N^{2}LO$
C_S	-1.83406	-0.64687	1.09225
C_T	0.15766	0.58128	0.24388
C_1		0.18389	-0.13784
C_2		0.15591	0.07001
C_3		-0.13768	-0.13017
C_4		0.02811	0.02089
C_5		-1.99301	-1.82601
C_6		0.26774	0.18700
C_7		-0.25784	-0.24740
C_{nn}			0.05009

Phase shift fits

fit to $E_{lab}=1, 5, 10, 25, 50, 100 \text{ MeV}, \text{ SF cutoff} = 800 \text{ MeV}$

vary R_0 from 0.8-1.2 fm, corresponds to ~600-400 MeV

considerably better than EGM N²LO potentials

Auxiliary Field Diffusion Monte Carlo A. Gezerlis, S. Gandolfi

AFDMC: Hubbard-Stratonovich transformation using auxiliary fields to change quadratic spin-isospin operator dependences to linear

include full interaction at LO, NLO, and N²LO in propagator NN interactions only, next:3N

next: test which parts of chiral EFT interactions are perturbative (N³LO contributions will have nonlocal parts)

optimal number of 66 particles, include contributions from 26 neighboring cells of simulation box

statistical uncertainty smaller than points no to full Jastrow: 0.1-0.5 MeV (1-5%) for $R_0=1.2-0.8$ fm

AFDMC results for neutron matter

Gezerlis, Tews, Epelbaum, Hebeler, Gandolfi, Nogga, AS, arXiv:1303.63 order-by-order convergence up to saturation density

Comparison to perturbative calculations at N²LO

Hartree-Fock +2nd order +3rd order (pp+hh), same as for N³LO calcs.

band at each order from free to HF spectrum

low cutoffs (400 MeV) 3rd order corr. small, excellent agreement with AFDMC

Electroweak interactions and 3N forces

weak axial currents couple to spin, similar to pions

two-body currents predicted by NN, 3N couplings to N³LO Park et al., Phillips,...

two-body analogue of Goldberger-Treiman relation

explored in light nuclei, but not for larger systems

dominant contribution to Gamow-Teller transitions, important in nuclei (Q~100 MeV)

3N couplings predict quenching of g_A (dominated by long-range part) and predict momentum dependence (weaker quenching for larger p) Menendez, Gazit, AS (2011) Nuclear physics of direct dark matter detection

direct dark matter detection needs **nuclear structure factors** as input, particularly sensitive to nuclear structure for spin-dependent couplings

relevant momentum transfers $\sim m_{\pi}$

calculate systematically with chiral EFT Menendez et al. (2012)

dark matter response may be complex Haxton et al. (2012)

Spin-dependent WIMP scattering off nuclei

Limits on SD WIMP-neutron interactions

best limits from XENON100 Aprile et al., 1301.6620 uses Javier Menendez' calculation

Spin-dependent WIMP-nucleus response for ¹⁹F, ²³Na, ²⁷Al, ²⁹Si, ⁷³Ge, ¹²⁷I

Klos, Menendez, Gazit, AS (2013)

Summary

3N forces are a frontier

in chiral EFT, for neutron-rich nuclei, matter, and neutron stars

key for **neutron-rich nuclei**: O, Ca isotopes, N=28 and shell evolution with J.D. Holt, J. Menendez, T. Otsuka, J. Simonis, T. Suzuki

dominant uncertainty of **neutron (star) matter** below nuclear densities predicts **neutron skin** with theoretical uncertainty comparable to exp. constrains **neutron star radii and equation of state** for astrophysics with K. Hebeler, T. Krüger, I. Tews, J.M. Lattimer, C.J. Pethick

first **QMC calculations with chiral EFT interactions** with A. Gezerlis, I. Tews, E. Epelbaum, K. Hebeler, S. Gandolfi, A. Nogga

dark matter response of nuclei

with P. Klos, J. Menendez, D. Gazit