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The large two-body s-wave scattering length 
limit: Bose droplets with Efimov character 
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Spectrum is determined 
by as and one (!) three-
body parameter. 

(Ideal) Three-Body Efimov Plot: 
Universally Linked Sequence of States 



What is the Underlying Three-Body 
Hamiltonian for Identical Bosons? 

• Non-relativistic quantum mechanics:                             
H = T1 + T2 + T3 + gδ(r12) + gδ(r23) + gδ(r31).  

•  1D: One three-body bound state for 
negative g (McGuire): E3=−4ħ2/[m(a1D)2]. 

•  2D: Two three-body bound states for 
negative g (Bruch and Tjon, Nielsen et 
al.): E3=16.523E2 and 1.270E2. 

•  3D: Infinitely many three-body bound 
states (geometric sequence), whose 
absolute position depends on a three-
body parameter. 
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This Talk 

1.) Direct observation of a three-body 
Efimov state: Helium trimer excited state 
(positive two-body s-wave scattering 
length).  

2.) At unitarity, extension to larger N: 
Provided the BBB ground state is a (nearly) 
pure Efimov state, are the N-boson ground 
states universal? 
Ground state of N-body van der Waals systems 
at unitarity? 



Signatures of Three-Body Efimov 
Physics  

• Experiments to date: 
§  Losses near three-atom threshold 

(negative scattering length side): 
Geometric scaling factor of ~22.7 
has been observed (pioneering 
work by Grimm et al.). 

§  Losses near atom-dimer 
threshold. 

 • Many other possibilities: 
§  Three-body Efimov states are predicted to have impact 

on transition from polaron branch to molecule branch 
(Levinsen et al.). 

§  Three-body Efimov states are predicted to have impact 
on virial coefficient, and hence equation of state (Castin 
et al.). 

 



4He3 Rare Gas Trimer  
(not Ultracold) 

•  Liquid helium: E/N = −7K. 
•  It was suggested in the 1970s that the 

excited state of 4He3 is an Efimov state. 
•  4He-4He binding energy: Edimer = −1.3mK. 
•  4He is special due to the fact that          

as/reff~12.5 (naturally large!). 
•  Two-body s-wave scattering length 

as=171a0. 
•  Two-body effective range reff=15.2a0. 
•  Two-body van der Waals length 

rvdW=5.1a0. 
•  Two L=0 bound states with Etrimer=
−131.8mK and −2.65mK. 

40Ar3 

1 K = 8.6 x 10−5 eV 

How to make 
and probe 
helium trimer? 

4He3 



Placing the Helium Trimers on the 
Three-Body Efimov Plot 

Line: 
Universal 
ZR theory 
(Braaten, Hammer) 

True helium 
(ground and  
excited states) 

Three-body parameter is chosen such  
that ZR energy agrees with energy  
of scaled helium trimer excited state. 

VHe-He(r) is multiplied by β. 
β < 1 β > 1 

For the excited 
state, symbols 
agree with line! 
Molecular system 
follows predicted 
Efimov behavior. 

βVHe-He(r12) + βVHe-He(r23) + 
βVHe-He(r31). 

Symbols: 
Scaled helium  

Blume, Few-Body Syst. (2015);   
Esry, Lin, Greene, PRA 54, 394  
(1996); Naidon, Hiyama, Ueda,  
PRA 86,012502 (2012). 



Experimental Approach for Detecting 
and Characterizing the Efimov State 

Grating serves as mass selector (N times atom mass): He3 signal  
contains ground state trimer and excited state trimer. 
Laser beam ionizes trimer: Coulomb explosion of 4He3 (3 ions). 

Kunitski,…, Blume, Dörner,  
Science 348, 551 (2015).  

nozzle 



The ionization is instantaneous and the He-ions are  
distributed according to the quantum mechanical eigen 
states of the ground and excited helium trimer. 
Large r12, r23 and r31 correspond to small 1/r12+1/r23+1/r31. 

difference 
spectrum (exp.) 

exc. state (theory) 
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kinetic energy release in eV (log scale) 
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ground state 
only (exp.) 

excited state 
(exp., “difference  
measurement”) excited state 

(theory) 

The ground state is large. The excited state is huge (eight 
times larger). 
Assuming an “atom-dimer geometry”, the tail can be fit 
to extract the binding energy of the excited helium trimer. 
Fit to experimental data yields 2.6(2)mK. Theory 2.65mK. 

Reconstructing Real Space Properties: 
Pair Distribution Function of 4He3 



Other Structural Characteristics 
Other Structural Properties 
of 4He3 

ground state: 
theory 

excited state: 
theory 

excited state: 
experiment 

Divide all three interparticle distances by largest rij and plot  
kth atom (positive y).  
Corresponds to placing atoms i and j at (−1/2,0) and (1/2,0). 
 
Ground state and excited states have distinct characteristics. 



Connection Between Helium Trimers 
and Ultracold Atoms? 

THEORY κ(1)r6 a(1)/r6 κ(1)a(1) 

Jia Wang et al. 0.226(2) -9.73(3) -2.20(2) 
Naidon et al. 0.187(1) -10.85(1) -2.03(1) 

κ(1)r6 a(1)/r6 κ(1)a(1) κ(2)r6 a(2)/r6 κ(2)a(2) κ(1)/κ(2) a(1)/a(2) 

He-He 
(scale) 

0.222 -9.80 -2.12 0.00947 -166 -1.57 23.4 1/17.3 

Experiments on various cold atom 
systems find: a(1)/r6 ~ −9.6 (Grimm group,  
and then others). Now referred to as  
van der Waals universality. 

1 2 

Helium trimer ground state (1) ~ “ground” alkali trimer (1). 
Helium trimer excited state (2) ~ zero-range theory.	 
	 

Zero-range theory: κ(n)a(n) = −1.50763	 



More than Three Identical Bosons: 
What Do We Know?  

•  Non-relativistic quantum mechanics: H = Σj Tj + Σj<k gδ(rjk). 

•  1D: N-body bound state for negative g (McGuire):                      
EN/N = −ħ2/(N2−1)/[6m(a1D)2]. 

 
•  2D: Two three- and two four-body bound states for negative g 

(Platter et al.). Large N limit (Hammer and Son): EN+1/EN = 8.567. 

•  3D:  
§  N=4 sector has been studied quite extensively (Hammer et al., 

von Stecher et al., Deltuva): Two four-body states tied to each 
each Efimov trimer (calculations for resonance states with 
finite-range two-body potentials by Deltuva).  

§  Much less is known for N>4.  



Schematic of Four-Boson Energy 
Spectrum 

Etetramer(“gr.”) 
Etetramer(“exc.”) 

Etrimer 

Four-atom 
resonances  
have been 
observed  
experimentally 
in cold atom 
experiments 
by Grimm’s 
group. 
Theory: 
von Stecher et  
al., Platter et al., 
Deltuva. 

At unitarity:  
Etetramer(“gr”)=4.61Etrimer 
Etetramer(“exc”)=1.002Etrimer 

Figure taken from 
Grimm group. 
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Literature Results for “Efimov-Like” 
States: Energy per Particle at Unitarity 
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Two-body 
Gaussian 

von Stecher 

Gattobigio et al.: 
EN/N ~ # N + correction; 
semi-empirical based 
on gr. st. calcs. (PRA 
2014). 
 
Nicholson:  
EN/N ~ # N; from log-
normal distribution of 
noise (PRL 2012). 
 
von Stecher: Two-body 
and three-body short-
range interactions; 
based on gr. st. calcs. 
(JPB 2010).  

If the predictions were truly universal, 
the curves would collapse to a single curve. 



Start Simpler: N Identical Bosons with 
Large Scattering Length  

•  Ideally, treat: H = Σj Tj + Σj<k gδ(rjk) plus three-body zero-range 
BC. 

•  Simpler: H = Σj Tj + Σj<k V(rjk); V=He-He van der Waals potential. 

Well known 
literature results: 
  
Small N (N<10): 
E/N ~ # N. 
 
Large N: E/N ~ −7K 
 
(E/N changes by 
four orders of 
magnitude). 

Quantum liquid: 
No shell structure! 



What About Infinite S-Wave Scattering 
Length for van der Waals Interactions?  

Two-body van der Waals 
potential V(r)=cp/rp−c6/r6 with 
infinite as and one zero-
energy two-body bound 
state (fixed c6 and mass m): 
p=12 (Lenard-Jones), p=10, 
p=8. 
 
 

N-body energies scaled by 
three-body energy: 
p=12: E3/EvdW = (0.230)2. 
p=10: E3/EvdW = (0.233)2. 
p=8: E3/EvdW = (0.245)2. 
The power p matters! 
 

Nearly perfect collapse  
of scaled ground 
state energy. 

N 



N Identical Bosons with Infinitely Large 
s-Wave Scattering Length  

• Non-relativistic quantum mechanics in the spirit of Efimov 
(two-body zero-range interactions): H = Σj Tj + Σj<k gδ(rjk). 

• Build zero-range interactions into two-body propagator. 
We use path integral Monte Carlo approach extrapolated to 
zero temperature (Yan and Blume, PRA (2015)). 

•  To avoid Thomas collapse, use repulsive three-body 
regulator (we don’t know how to treat three-body zero-
range boundary condition…):  
§  Use three-body regular so that N=3 system is as close as 

possible to ideal Efimov trimer; see work by von Stecher 
(hardcore regular or repulsive powerlaw potential). 



Approximate Scale Invariance for N=3: 
Three-Body Finite-Range Regulator  

• We use two-body zero-range interactions. 
• Repulsive three-body potential pushes the 

trimer out. 
R 

V(R) 

Three-body energy 
ratio of ground state 
(n=1) and first 
excited state (n=2) 
deviates by ~0.11% 
from universal 
energy spacing     
(<1 out of 515) 

HC 

Scale invariance 
is broken weakly 

by regulator. 

expected 

actual 
n (n-th Efimov state) 

N=3 
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We consider ground 
states (not resonance 
states).  
 
Three-body hardcore 
potential is hard to 
treat numerically by 
PIMC approach.  
 
Use 1/(Rijk)p regulator 
in three-body sector: 
(Rijk)2=(rij)2+(rjk)2+(rki)2

. 
 
 

p=4 

p=8 

The three-body regulator leads to very weak breaking of the scale 
invariance in three-body sector. The effect is enhanced for N>3.  

Yan and Blume, PRA 2015 and in preparation. 

Use Two-Body Zero-Range Interactions 
and Three-Body Finite Regulator 



No evidence of shell structure 
or layering. 
Three-body regulator changes 
“size” but leaves Pangle nearly 
unchanged. 

Ppair 
N=13 

Ptriple 
N=13 

Pangle 
p=6 

p=4 

p=4 

p=8 

p=8 

N=13 

5 

θ θ 
θ 

Smooth Distribution Functions: 
No Shell Structure 

P a
ng
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(θ
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N-Body Lengths in Terms of 
Characteristic/Intrinsic Lengths 

•  Three-body regulator (p=6): L6=(mC6/ħ2)1/4/2. 

• N-body state is large and largely          
located in classically forbidden region. 

N=3 N=15 
rij / L6 16 10 
Rijk / L6 18 11 
(ρmax)-1/3 / L6 7 4.5 

Despite separation of scales, a surprisingly (?) large 
dependence of (EN/N)/(E3/3) on the three-body regulator is seen. 
Common feature: Structureless broad “blobs” (shrink/stretch).  



Nearly Perfect Collapse of Ppair if 
Scaled by N-Body Binding Momentum 

p=4 

p=8 2-body ZR + 3-body  
repulsive regulator 

Amplitude is largely located in classically forbidden region. 



Nearly Perfect Collapse of Ppair if 
Scaled by N-Body Binding Momentum 

Gaussian 

Lenard-Jones 

2-body ZR + 3-body  
repulsive regulator 

Different classes in 
N-body sector. 

Amplitude is largely located in classically forbidden region. 

2-body ZR + 3-body  
repulsive regulator 



0

8

16

24

32

40

(E
N

 / 
N

) /
 (E

3 / 
3)

0

8

16

24

32

40

(E
N

 / 
N

) /
 (E

3 / 
3)

2 4 6 8 10 12 14
N

0

10

20

30

40

(E
N

 / 
N

) /
 (E

3 / 
3)

(a)

(b)

(c)

litera- 
ture 

Two-body ZR 
plus three-body 
regulator 

Two-body van  
der Waals 

Different “classes”: 
 
2-body ZR + 3-body repulsive regulator: 

 N=2: Fully universal. 
 N=3: Ground state trimer is nearly 
 identical to ideal Efimov trimer. 
 N>3: “Sensitivity” of EN/E3 
 increases with increasing N. 

 
2-body van der Waals: 

 N=2: Nearly fully universal. 
 N=3: Structure of ground state 
 trimer differs from ideal Efimov 
 trimer; van der Waals universality 
 for sufficiently repulsive short-
 range potential.    
 N>3: EN/E3 nearly collapse. 

 
2-body Gaussian: EN~N2 for N>6. 
 



Summary 
• Boson droplets (N>3) at unitarity: 
§  Throughout this talk: Investigated ground state 

manifold. 
§  Next step: Look at N-body states tied to excited Efimov 

trimers. 

• Observation of helium trimer excited state (positive as): 
§  Structural properties deduced from experiment and 

theory agree. 
§  More focus on structural properties in the future?  
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κpredict = κ3  + κ3 (N – 3) (κ4 / κ3 – 1); see Gattobigio et al. (2015). 
Three- and four-body binding momentum serve as input.  

He-He(scale) 



N-Body Sector with Infinitely Large 
Two-Body s-Wave Scattering Length 
• We developed Monte Carlo approach that can deal with 

two-body zero-range interactions (use exact two-body 
zero-range propagator). 

• Consider N-body ground states: 

§  We calculated N-body energies and structural 
properties for C6/(Rijl)k three-body regulators, k=4-8. 

§  Trimer size is about 26 times larger than Lk (good 
separation of scales).  

Yangqian Yan, D. Blume: PRA 90, 013620 (2014);  
PRA 91, 043607 (2015); and in preparation.  



Energy per Particle from our Monte 
Carlo Calculations 

von Stecher 

k=4 

k=8 

If the N-body energy was 
fully determined by the 
three-body parameter, 
then the curves would 
collapse to a single curve. 
 
Doesn’t happen with the 
literature data. 
 
Doesn’t happen with our 
data. 
 
Surprisingly (?) large 
sensitivity on details of 
three-body regulator. 



Factor of 10… 
Apparently not  
enough. 

Length Scales? 



Summary 

From (quantum/physical 
     chemistry to) 
           quantum liquids 
                to quantum gases 

Thanks to collaborators: 
Chris Greene, Brett Esry, 
Maksim Kunitski, 
Reinhard Doerner, 
Yangqian Yan, S. Zeller,  
J. Voigtsberger, A. Kalinin,  
L. Schmidt, M. Schoeffler,  
A. Czasch, W. Schoellkopf,  
R. Grisenti, T. Jahnke. 



“Universal” Predictions for Energy of 
N-Body Droplets with Infinitely Large as 

N-body energy is scaled by 
three-body energy. 
E/N curves deviate in functional 
form and coefficients. WHY? 



How Do the Three-Body Correlations of 
an Ideal Efimov Trimer Look Like? 

θ 

infinitely many lobes 

all angles occur 

θ 
θ 

E3 = (ħκ3)2/m 

Next: What about finite as? 
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• …this is the perfect Efimov scenario. 

• Discrete scale invariance (the zero-range interactions 
do not define a length scale for the trimer): The 
hyperradial Hamiltonian becomes (s0=1.006…)  

Infinite number of 
three-body bound 
states with spacing 
22.72. 
 
Each hyperradial 
wave function has  
infinitely many  
nodes. 

Pretend:  
as is Infinitely Large and reff Vanishes 

2 

2 



• …this is the perfect Efimov scenario. 

• Discrete scale invariance (the zero-range interactions 
do not define a length scale for the trimer): The 
hyperradial Hamiltonian becomes (s0=1.006…)  

Infinite number of 
three-body bound 
states with spacing 
22.72. 
 
Each hyperradial 
wave function has  
infinitely many  
nodes. 

Pretend:  
as is Infinitely Large and reff Vanishes 

2 

2 



Smooth Pair and Triple Distribution 
Functions for N=13 

Gaussian 

Quantitative differences. 
Qualitatively similar. 
In particular: No evidence of  
shell structure or layering. 
 
 
Peak density displays 
saturation: 

k=5 

k=7 



Dependence of N=13 Angular 
Distribution on Three-Body Regulator 

θ θ 
θ 

Fairly small dependence on three-body regulator – angular 
correlations appear less sensitive than overall size…  

k=4-8 
2 

1 



Angular Correlations of Three-Body 
System at Unitarity  

ZR 

Ground state:  
He-He (scale), 
He-He (SR), 
LJ (0 b. st.) 

exc.  
st. 

θ θ 
θ 

The ground and excited states look notably different. 
The excited state essentially coincides with zero-range  
theory distribution.  



N-Dependence of Angular Distribution 
for k=6 Three-Body Regulator 

N=3 

N=13 

5 θ θ 
θ 

For comparison: 



Motivating Questions 
• Unique three-body states: Do they lead to predictable 

N-body behavior?  

• Based on the knowledge of just a few parameters, can 
we predict N-body properties? 

• How many particles are “many”? 

• Weakly-bound systems with long-range interactions? 

• What role does dimensionality play? 

• What role does the particle statistics play? 



Thanks to Collaborators 
•  He trimer Efimov state: 
§  M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. 

Schmidt, M. Schoeffler, A. Czasch, W. Schoellkopf, R. 
Grisenti, T. Jahnke, D. Blume, R. Doerner: Science 348, 551 
(2015) 

 
•  Extensions to more bodies: 
§  Yangqian Yan, D. Blume: PRA 90, 013620 (2014); PRA 91, 

043607 (2015); and in preparation. 

•  Early work on van der Waals systems: 
§  D. Blume, C. Greene, B. Esry: JCP 113, 2145 (2000). 
§  D. Blume, B. Esry, C. Greene, N. Klaussen, G. Hanna, PRL 

89, 163402 (2002). 
§  D. Blume, C. Greene, JCP 112, 8053 (2000).  



Size of van der Waals Trimer as a 
Function of Inverse Scattering Length 

ground state 

1. excited state 

“true”  
helium 
trimers 

a-=-834a0 
a-/rvdw=-166 
(a-/rvdw)/22.694=-7.30 

a-=-48.31a0 
a-/rvdw=-9.796 

He-He potential [JCP 136, 224303 (2012)] 
+ overall scaling factor. 
(Rhyper)2= 
[Σi<j(rij)2] / 31/2 

Universal 
theory: 
κ*=-1.56(5)/a- 
 
This yields: 
0.0323/a0 
0.0424/a0 
 
Calculation: 
0.0439/a0 
0.0426/a0 



ZR 

Ground state:  
He-He (scale), 
He-He (SR), 
LJ (0 b. st.) 

exc.  
st. 

θ θ 
θ 

The ground and excited states look notably different. 
The excited state essentially coincides with zero-range  
theory distribution.  

Angular Correlations of Three-Body 
System at Unitarity  

Symbols: 
Gaussian 
potential. 
Not so  
different… 



Objectives of This Talk: 
Extended/Generalized Efimov Scenario  
“Standard” Efimov  
scenario: 
Three identical bosons 
with zero-range contact 
interactions:  

T1 

T2 
D 

• Efimov scenario for BN 
system:  
§  How do the N-body 

energies depend on the 
regularization in the three-
body sector? 

• Efimov scenario for BNX 
system (specifically, CsNLi):  
§  Do four-body states exist 

that are universally tied to 
CsCsLi Efimov states?  

§  If so, where do the four-
atom resonances lie relative 
to the three-atom 
resonances? 



Want to Go Beyond N=3:  
Possible Approaches… 
“Standard” Efimov  
scenario: 
Three identical bosons 
with zero-range contact 
interactions:  

T1 

T2 
D 

Ideally: Solve the N-body problem 
with two-body ZR interactions 
analytically... 
Treat N-body resonance states 
[for N=4, Deltuva, Few-Body Syst. 
54, 569 (2013); for N=5 and 6, von 
Stecher, PRL 107, 200402 (2011)]. 
Treat the ground state using FR 
two-body potentials and “correct” 
for non-universal effects 
(Gattobigio/Kievsky). 
Analyze noise (Nicholson). 
Make T1 close to universal using 
repulsive three-body force [von 
Stecher, JPB 43, 101002 (2010)]. 



• energy 
pairwise 
Gaussian 

Gattobigio 
& Kievsky 

Nicholson 

von Stecher 

Pairwise Gaussian: 
EN ~ N2 (non-universal). 
PRA 90, 013620 (2014). 
 
Gattobigio & Kievsky: 
finite-range corrections 
included (E4 made to 
match Deltuva result). 
PRA 90, 010101(R) 
(2014). 
 
Nicholson (noise):          
EN = E4N/2(N/2-1)/2. 
PRL 109, 073002 (2012) 
 
von Stecher: DMC 
results for 3b HC. JPB 
43, 101002 (2010). 

This talk:  
Monte Carlo calculations for two-body ZR 
interactions and different regularizations in 
three-body sector.  
 

EN for N Bosons (as=∞): “Universal” 
Energy Predictions from the Literature 



BBB (as=∞): Two-Body ZR Interactions 
and Three-Body Hardcore Potential  

• Hyperangular equation can be solved 
analytically (yields s0 value). 

• Hyperradial equation can be solved 
analytically. R 

V(R) 

Energy ratio of 
ground state (n=1) 
and first excited 
state (n=2) deviates 
by ~0.11% from 
universal energy  
spacing (<1 out of 
515) 

HC 



BBB (as=∞): Two-Body ZR Interactions 
and Three-Body Powerlaw Potential  

ZR Efimov  
theory 

HC V(R)=Ck/Rk 
 

Ck sets the  
energy scale 

For large k, the three-body 
powerlaw potential behaves 
like the hardcore potential. 
 
For k=2, the powerlaw 
potential “modifies” s0 
(does not regularize…). 
 
For k~3-4, we see some 
deviations from universal 
energy ratio for n=2 and 1.  



BBB (as=∞): Two-Body FR Interactions 
and Three-Body Gaussian Potential  
Range R0 of repulsive three-body Gaussian is fixed. 
Range r0 of attractive two-body Gaussian is varied. 

“small r0” 

“medium r0” 

“large r0” This is where 
Gattobigio   
et al. work. 
Trimer size   
<R> = 2.66r0. 
R2=[Σi<j(rij)2]/3 

A small repulsive three-body  
potential affects the ground and excited states differently. 

Trimer much, 
much larger 
than r0 and R0. 



as=∞: Two-Body ZR Interactions and 
Three-Body Powerlaw Potential   

• What happens in the N-body 
sector for different three-body 
powerlaw potentials? 

• Restrict ourselves to N-body 
ground states. 

• Calculate EN
(1)/E3

(1). 
 

ZR Efimov 
theory 

HC 

4 8 12 
k 

N=3: 

We use the Path Integral Monte Carlo (PIMC) 
approach, extrapolated to zero temperature, to 
treat N-body system: Pair approximation with 
analytical two-body zero-range propagator. 



Benchmarking the Two-Body Zero-
Range Propagator 

•  Two-body propagator calculated analytically for 1d and 
3d systems (harmonically trapped or free space). 

• Can be used in real or imaginary time evolution. 
• We have primarily used it in applications where 

imaginary time is identified with inverse T. 

• Example: Pair distribution function for harmonically 
trapped three-boson system. T=0 

exact 
PIGS 

Infinitely large as  
and three-body C6/R6  
powerlaw potential. 



EN for N Bosons (as=∞): “Universal” 
Energy Predictions from the Literature 

• energy 
pairwise 
Gaussian 

Gattobigio 
& Kievsky 

Nicholson 

von Stecher 

Pairwise Gaussian: 
EN ~ N2. 
 
Gattobigio & 
Kievsky (next talk): 
finite-range correc-
tions included (E4 
made to match 
Deltuva result). 
 
Nicholson (noise):          
EN = E4N/2(N/2-1)/2. 
 
von Stecher: DMC 
results for three-
body HC. 

Our work:  
Monte Carlo calculations for two-body ZR 
interactions and different regularizations in 
three-body sector.  
 



k=4 

5 

6 
8 

Purely repulsive three-body powerlaw potential: V(R)=Ck/Rk. 
 
As N increases, the dependence of the N-body energy on the 
power of the repulsive three-body potential increases.  
 
For large N, the larger k energies deviate notably from hardcore 
DMC energies (dash-dotted line).  

EN (as=∞): Two-Body ZR Interactions 
and Three-Body Powerlaw Potential 



Connection Between Helium Trimers 
and Ultracold Atoms? 

THEORY κ(1)r6 a(1)/r6 κ(1)a(1) 

Wang et al. 0.226(2) -9.73(3) -2.20(2) 
Naidon et al. 0.187(1) -10.85(1) -2.03(1) 
ZR theory -1.50763 

κ(1)r6 a(1)/r6 κ(1)a(1) κ(2)r6 a(2)/r6 κ(2)a(2) κ(1)/κ(2) a(1)/a(2) 

He-He 
(scale) 

0.222 -9.80 -2.12 0.00947 -166 -1.57 23.4 1/17.3 

He-He 
(SR) 

0.218 -9.88 -2.15 0.00928 -169 -1.57 23.5 1/17.1 

LJ (0 
b. st.) 

0.230 -9.49 -2.18 0.00981 -160 -1.57 23.4 1/16.8 

1 2 EXPERIMENT a(1)/r6 a(2)/r6 a(1)/a(2) 

cesium -9.53(11) -200(12) 1/[21.0(1.3)] 
lithium -7.50(5) -161(1) 1/[21.5(2)] 





Hyperradial Density for N Bosons 
(as=∞) 

N=3 

N=5 
7 

8 10 
15 

N=3 distribution is 
broadest. 
 
N-body hyperradial 
density becomes 
more compact 
and moves to 
larger R. 
 

Three-body powerlaw potential with k=6. N-body hyperradius 
R2 = [Σi<j (rij)2] / N. κ is the three-body binding momentum. 

1/κ = 16.4L6, where L6 is length scale of three-body 
powerlaw potential, L6 = (mC6/ħ2)1/4. 



Radial Density (as=∞):  
k=6 Three-Body Powerlaw Potential 

N=3 
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7 
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Radial density 
normalized to 
number of 
particles. 
 
Radial peak 
density saturates 
around N=10-15. 
 
The peak density 
for N=15 is 3 
times larger than 
peak density for 
N=3. Note: The errorbars are non-negligible. 



Midway Summary (as=∞): N Identical 
Bosons with Two-Body ZR Interactions 

• N-body energies show notable dependence on how the 
three-body system is regularized (we looked at different 
repulsive powerlaw potentials in hyperradius of three-
body subsystems). 

• Radial peak density, normalized to number of particles, 
saturates around N=10-15 for k=6. 

 
• Also monitored hyperradial density, two- and three-body 

correlations,…  

• Conclusion: To see “truly” universal behavior, need to go 
to N-body states tied to excited Efimov trimer? 



Unequal Masses:  
BNX System with Large Mass Ratio 

•  Recent experiments by the Chicago (arXiv:1402.5943) and 
Heidelberg [PRL 112, 250404 (2014)] groups on CsLi 
mixture measure three-atom resonances. 

•  Ideal Efimov scenario: 
§  Two large s-wave scattering lengths. 
§  Scaling factor of 23.669 for mass ratio 133/6 as opposed 

to 515.035 for BBB system. 

•  Provided three-body parameter is fixed, what happens in 
the BNX sector? 
§  Number of four-body bound states, if any, that are tied 

to B2X trimer? 
§  Four-atom resonances? 
§  When does four-body state hit trimer state? 

as as 



BBB versus BBX (as=∞): ZR Two-Body 
and HC Three-Body Potential 

BBX 

BBB 

BBB: ~0.11% 
BBX: ~1.9% 

The amplitude  
of the hyperradial 
density in the “inner 
lobe” is larger for 
BBX than for BBB. 
More favorable (i.e., 
smaller) energy level 
spacing introduces 
new computational 
challenge… 

BBX calculations are  
for CsLi mass ratio. 



BBX (as=∞): Gaussian Two-Body and 
Gaussian Three-Body Potential 

HC (in hyperradius) 

ZR Efimov 
theory 

Three-body repulsive Gaussian: Range R0 is fixed and 
height V0 is varied (below R2 ~ Σi<j(rij)2; not hyperradius…). 
Range and depth of attractive two-body Gaussian are 
fixed. 

explicitly correlated  
Gaussian basis set 

Calculations are  
for 133/6 (CsLi) 
mass ratio. 



Expand Wave Function in Basis: 
Explicitly Correlated Gaussians  

 
 
 
§  Basis functions:  
    Simple Gaussian  Φk(x) = exp(-xTA(k)x/2) 

 

§  x collectively denotes N-1 Jacobi coordinates. 
§  A denotes (N-1)x(N-1) dimensional parameter matrix. 

§  Use physical insight to choose dij efficiently. 
§  For each basis function ϕk (LΠ=0+), we have N(N-1)/2 parameters. 
§  For N=4, Nbasis=1000, LΠ=0+: 6000 non-linear variational parameters. 
  

 

Sum over interparticle 
distances: ΣI<j -(rij/dij)2 / 2 

Total wave fct.: 

See Suzuki  
and Varga 

ck S Φk(x) 



Explicitly Correlated Gaussian and 
Semi-Stochastic Variational Approach  

 Hamiltonian matrix can be evaluated 
semi-analytically. 
 Rigorous upper bound for energy 
(“controlled accuracy”).  
 Matrix elements for structural 
properties can be calculated 
analytically. 
 Computational effort increases with 
number of atoms N: 
§  Evaluation of Hamiltonian matrix 

elements involves diagonalizing  
(N-1)x(N-1) matrix. 

§  Number of permutations Np scales 
non-linearly (Np=0, 4, 36, 576,… for 
FF’, 2F2F’, 3F3F’, 4F4F’,… 
systems).  

Approach is powerful for 
certain few-body 
problems: 
Harmonically trapped 8 
particle system (4 spin-up 
and 4 spin-down fermions) 
at unitarity as a function of 
range of two-body 
Gaussian. 

Mulkerin et al., 
PRA 90, 023626 (2014) 

Yin and Blume 
(preliminary) 



BBX (as=∞) with Mass Ratio 133/6: 
Hyperradial Density  

ZR Efimov theory 

2b FR + 3b Gaussian:  
ground state 

2b FR + 3b Gaussian:  
1. excited state 

Convincing agreement… 

Binding momentum (exc. 
state energies are made  
to agree). 



Cs3Li (as=∞): Gaussian Two-Body and 
Gaussian Three-Body Potential 

Four-body ground state:      Four-body excited state: 

Three-body repulsive Gaussian: Range R0 is fixed and 
height V0 is varied. 
Range and depth of attractive two-body Gaussian are 
fixed. 



CsNLi (as=∞)  
Pair distribution: 
Likelihood of finding 
two particles at 
distance r from each 
other. 
 
Distributions for 
Cs3Li ground state 
resemble those of 
Cs2Li ground state. 
 
Distributions for 
Cs3Li* excited state 
are broader.  

CsCs distance CsLi distance 

Cs2Li Cs2Li 

Cs3Li Cs3Li 

Cs3Li* Cs3Li* 



Generalized Efimov Scenario for CsLi 
Mixture 

dimer 

Tr1 

Tr2 

Te1,1 

Te1,2 

a3,-
 

a4,-   
(1,1) (1,2) a4,-

 

(1) Two tetramer 
states: 
 
a4,-   ~ 0.55a3,-    
 
a4,-   ~ 0.91a3,-    
 
More weakly-
bound tetramer 
becomes 
unbound on 
positive 
scattering 
length side. 

(1,1) (1) 

(1,2) (1) 

Fairly similar to equal boson case…  

Energy ratios  
2.28 and 1.02 



BBB (as=∞): Two-Body FR Interactions 
and Three-Body Gaussian Potential  

“small r0” 

“medium r0” 

“large r0” 

ZR Efimov 
theory 

HC 

For sufficiently large Gaussian three-
body barrier, the 2b ZR + 3b hardcore 
value is approached.  

If three-
body 
barrier is 
high, 2b 
FR and 2b 
ZR results 
behave 
the same. 



Benchmarking the Two-Body Zero-
Range Propagator 

•  Two-body propagator calculated analytically for 1d and 
3d systems (harmonically trapped or free space). 

• Can be used in real or imaginary time evolution. 
• We have primarily used it in applications where 

imaginary time is identified with inverse T. 

• Example: Energy of harmonically trapped N-particle 
system with infinite coupling constant in 1d at kBT=Eho. 

8 time slices 

128 



Three-Body Correlation (as=∞):  
k=6 Three-Body Powerlaw Potential 

N=3 

10 

15 

Three-body  
sub-hyperradius  
(R3)2 = [(rij)2+(rjk)2+(rki)2] / 3. 
All ijk combinations.  



Pair Distribution Function (as=∞):  
k=3 Three-Body Powerlaw Potential 

N=3 

10 

15 


