Is the composite fermion a Dirac particle?

Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015

Ref.: 1502.03446

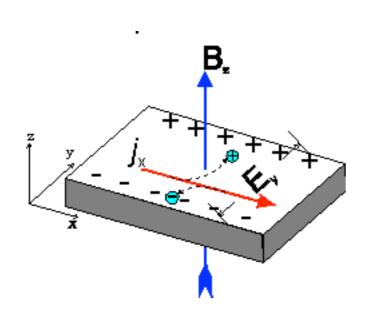
 Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

- Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)
- Berry phase: new characteristic of Fermi liquid

- Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)
- Berry phase: new characteristic of Fermi liquid
- The old puzzle of particle-hole symmetry

- Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)
- Berry phase: new characteristic of Fermi liquid
- The old puzzle of particle-hole symmetry
- Berry phase of composite fermions

Hall conductivity/resistivity

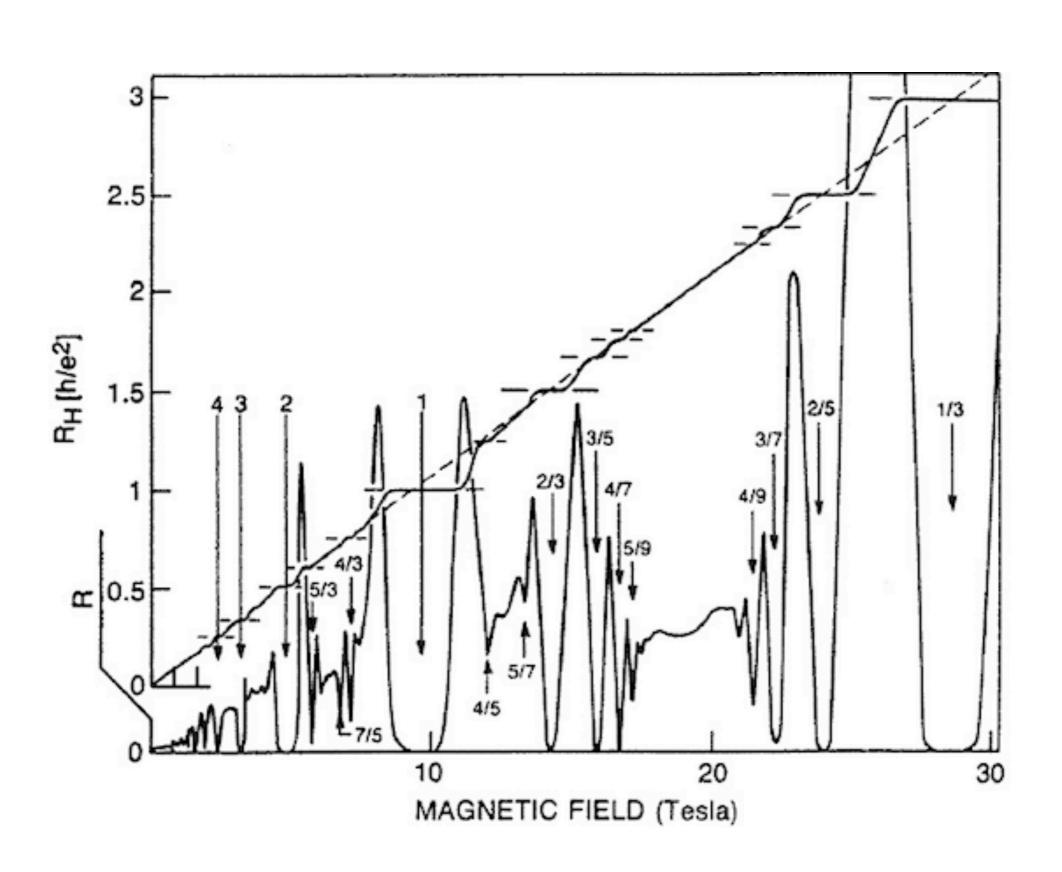


$$j_i = \sigma_{ij} E_j$$

$$E_i = \rho_{ij} j_j$$

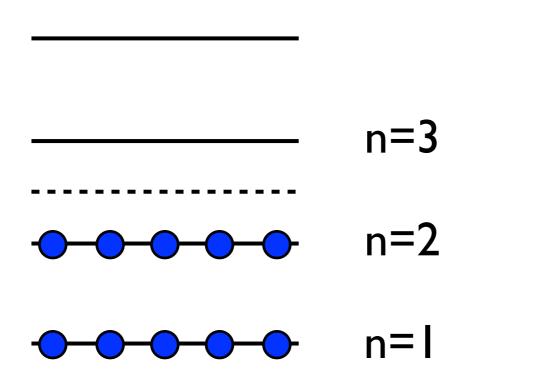
$$i, j = x, y$$

Fractional QH effect



Integer quantum Hall state

• electrons filling n Landau levels



$$n_{\rm 2D} = n \frac{eB}{2\pi\hbar}$$

$$\sigma_{xy} = \frac{en_{\rm 2D}}{B} = n\frac{e^2}{2\pi\hbar}$$

Landau levels of 2D electron in B field

Landau levels of 2D electron in B field

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ \hline & \\ \hline & & \\ \hline & \\$$

Landau levels of 2D electron in B field

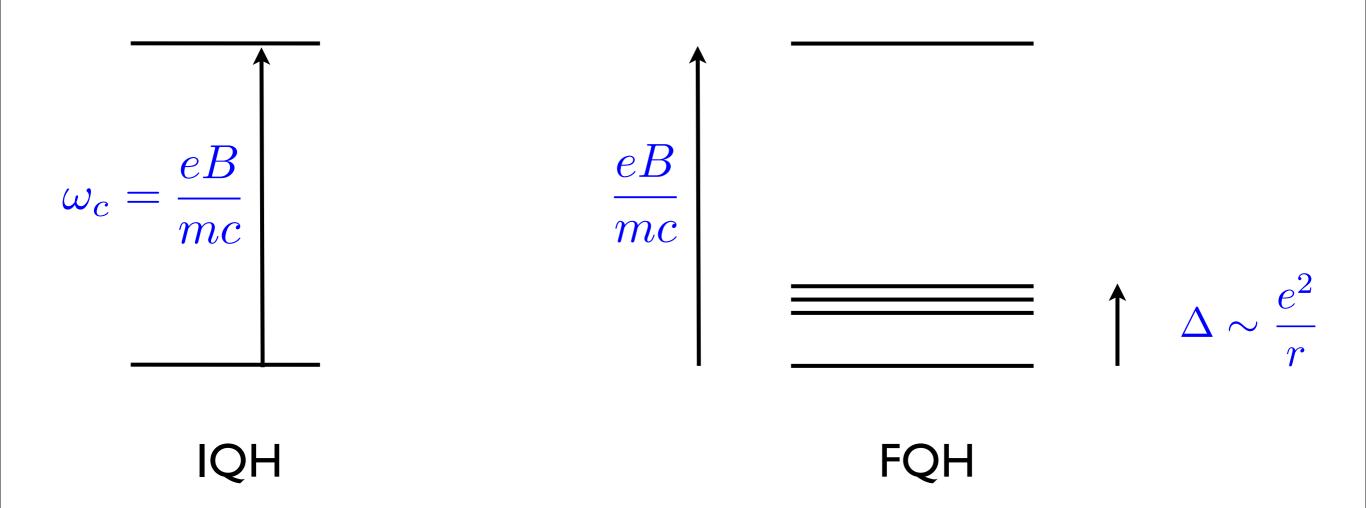
$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ \hline & \\ \hline & & \\ \hline & \\$$

Filling fraction
$$\nu = \frac{n}{B/2\pi}$$

Landau levels of 2D electron in B field

Filling fraction
$$\nu = \frac{n}{B/2\pi}$$

Energy scales



Interesting limit: $eB/mc >> \Delta$ (m \rightarrow 0) only lowest Landau level (LLL) states survives

No small parameter

QHE in cold atoms

- Rapidly rotating atomic systems Wilkin Gunn 2000
- Lattice magnetic field by quadrupole potential and time modulation of tunneling Sørensen Demler Lukin 2005
- Artificial magnetic field Jaksch Zoller 2003
- Fractional Chern insulators Cooper Dalibard 2013,
 Yao et al 2013

 Theoretical understanding of FQHE relies on the notion of the composite fermion

Mathematically

Lopez, Fradkin Halperin, Lee, Read

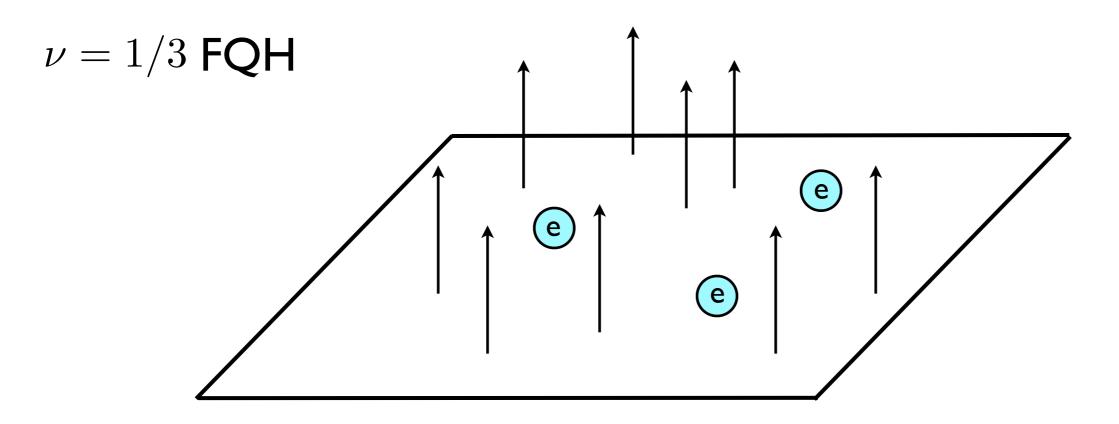
$$\mathcal{L} = i\psi^{\dagger}(\partial_{0} - iA_{0} + ia_{0})\psi - \frac{1}{2m}|(\partial_{i} - iA_{i} + ia_{i})\psi|^{2} + \frac{1}{4\pi p}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda} + \cdots$$

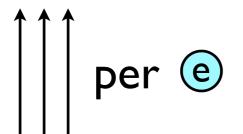
 $\nabla \times \mathbf{a} = 2\pi p \, \psi^{\dagger} \psi$

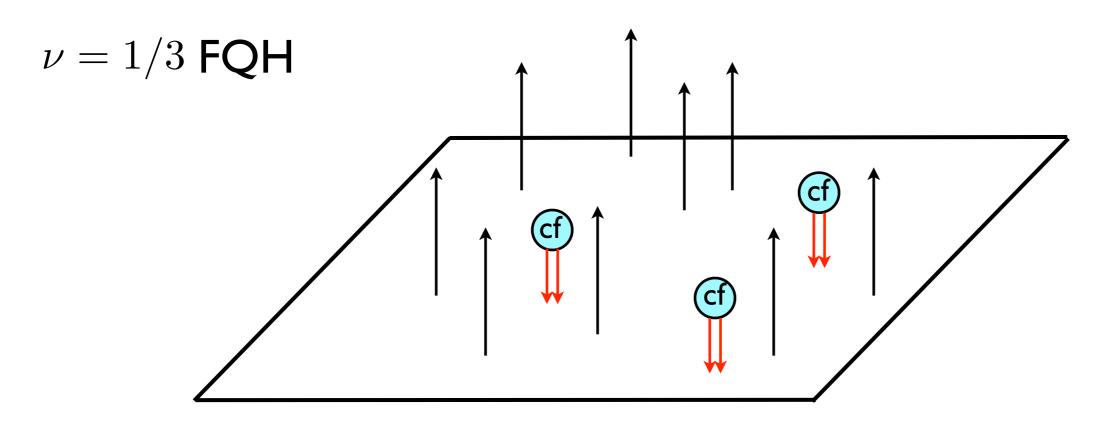
of attached flux quanta

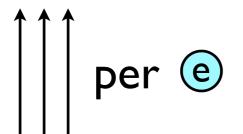
At mean field level:
$$B_{\rm eff} = B - b = B - 2\pi p\, n$$

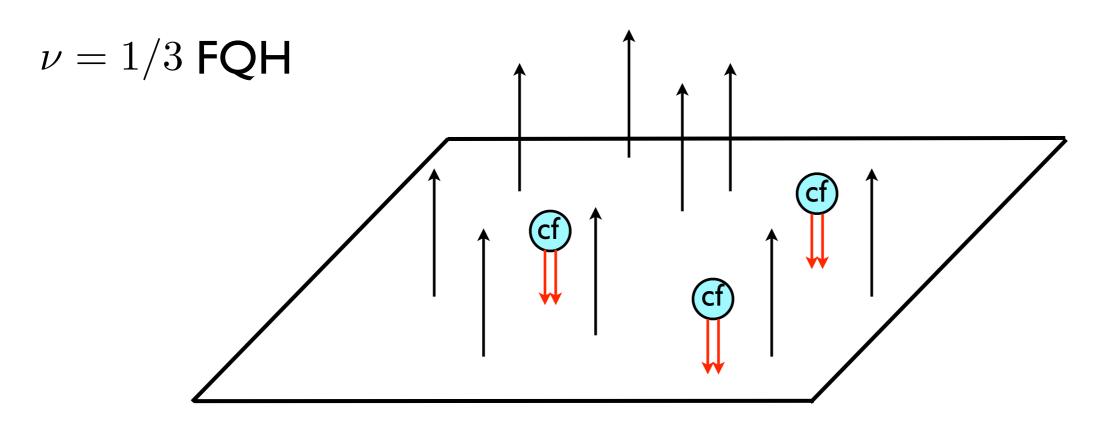
$$\nu_{\rm eff}^{-1} = \nu^{-1} - p$$

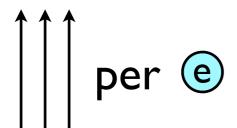


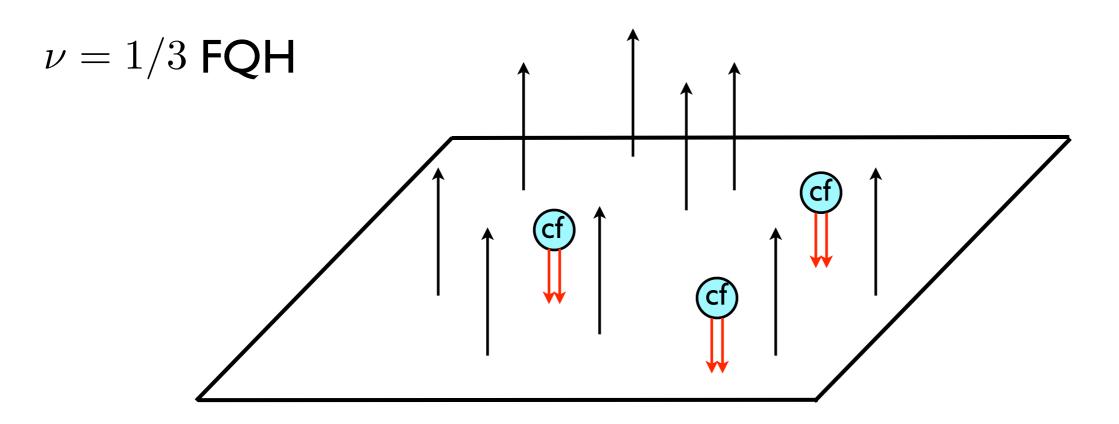


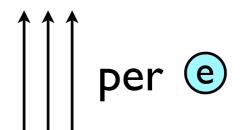




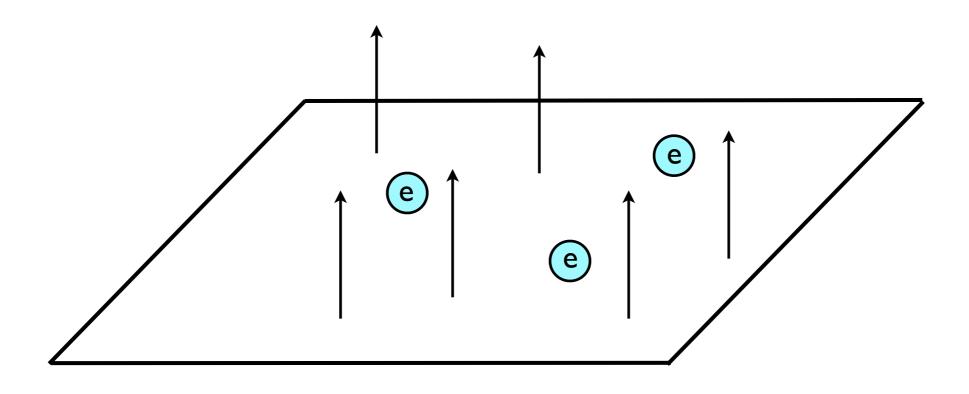


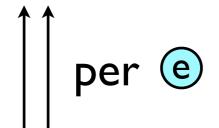


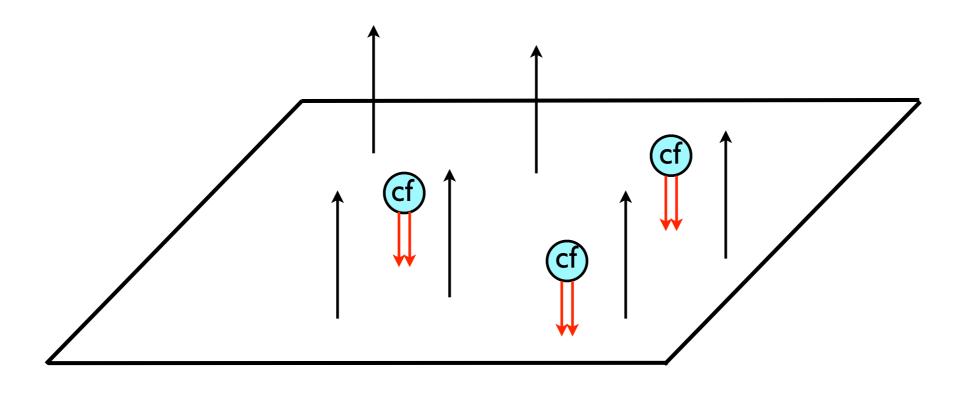


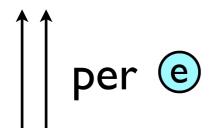


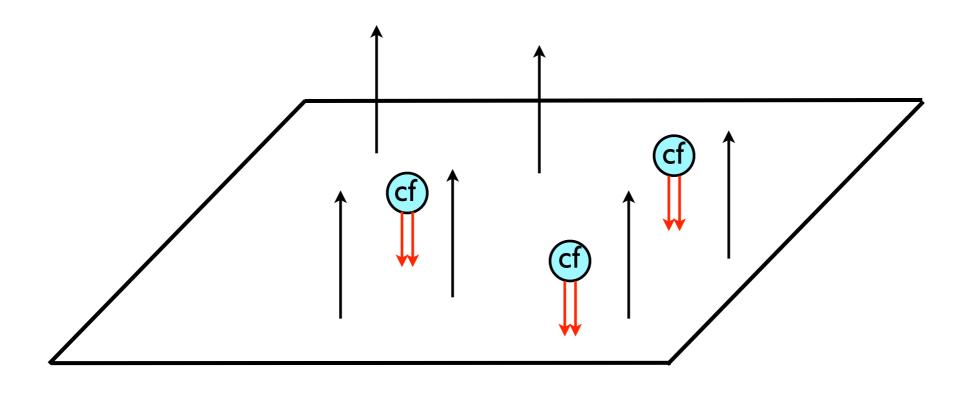
IQHE of CFs

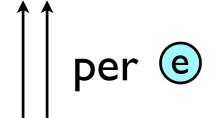




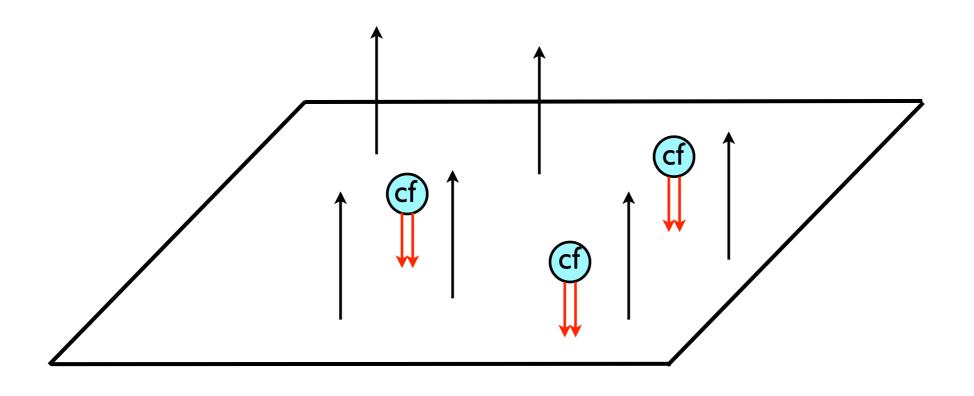








Zero B field for @

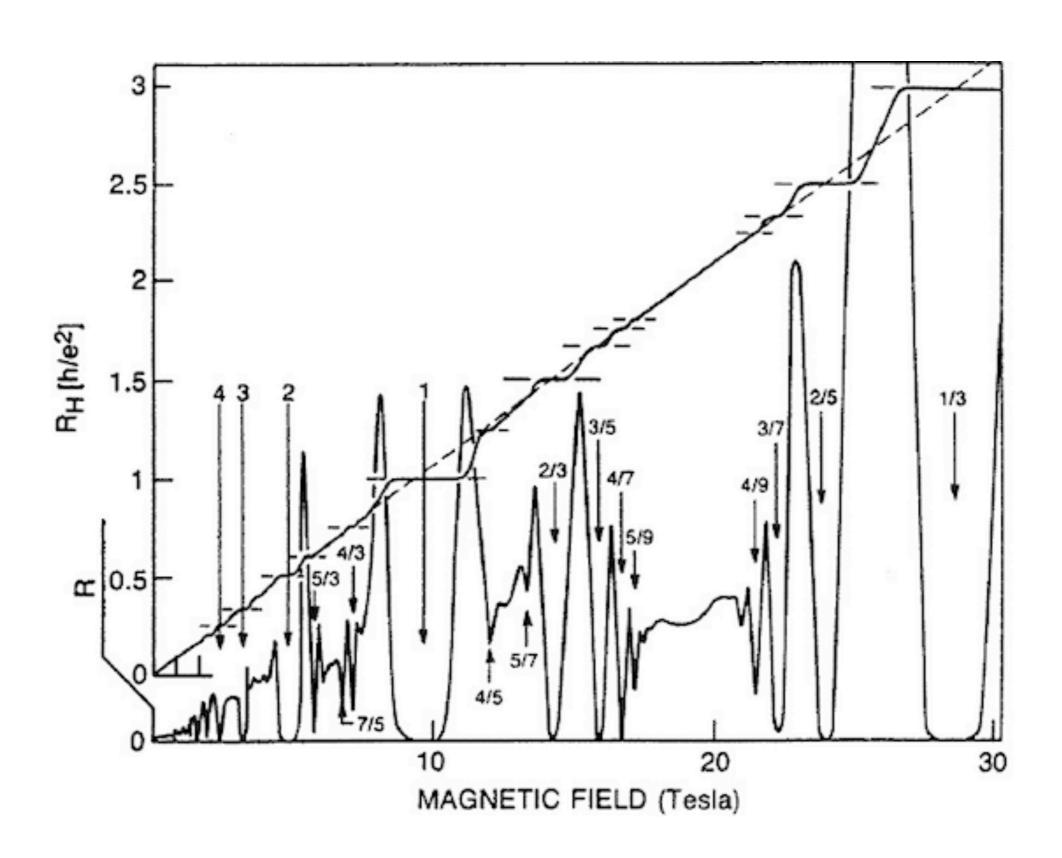


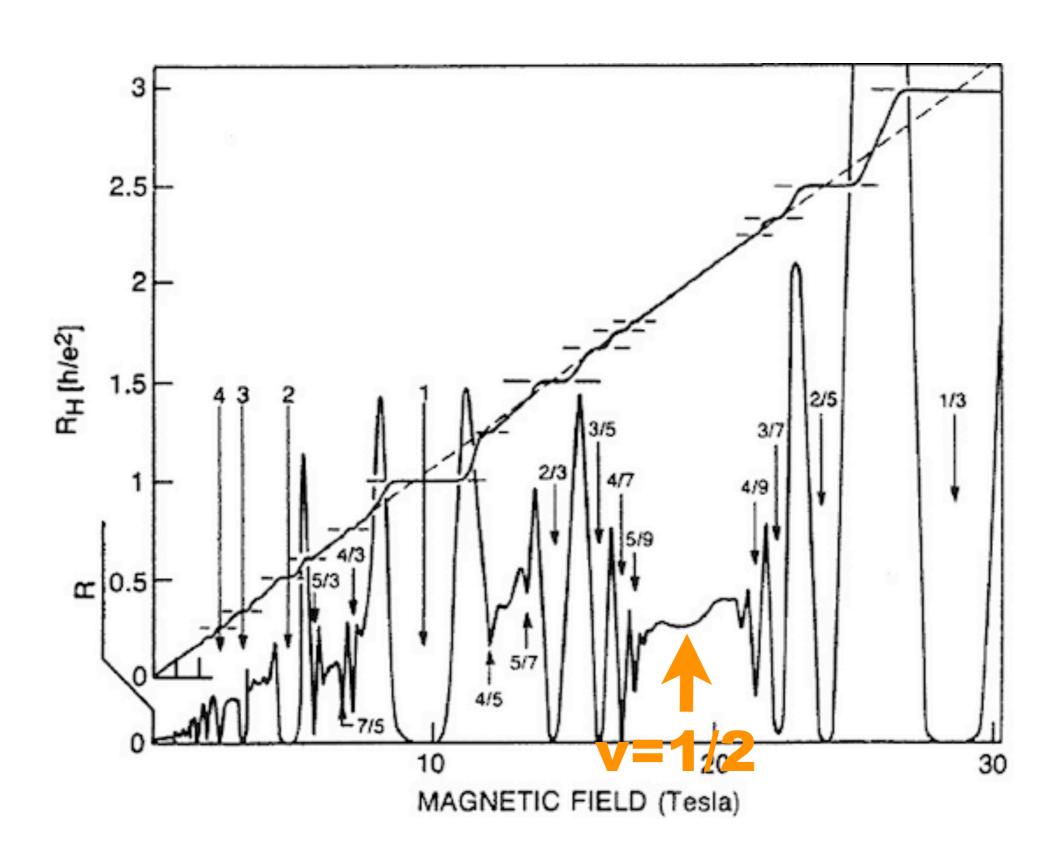
Zero B field for @

CFs form a Fermi liquid

Fermi liquid of CFs

- The theory of the nu=1/2 state as a Fermi liquid of CFs was developed by Halperin, Lee, Read (HLR)
- No small expansion parameter: p~1
- Difficulty with energy scales in the limit $m \rightarrow 0$
- Nevertheless, abundant experimental evidence for a Fermi liquid behavior of the nu=1/2 state

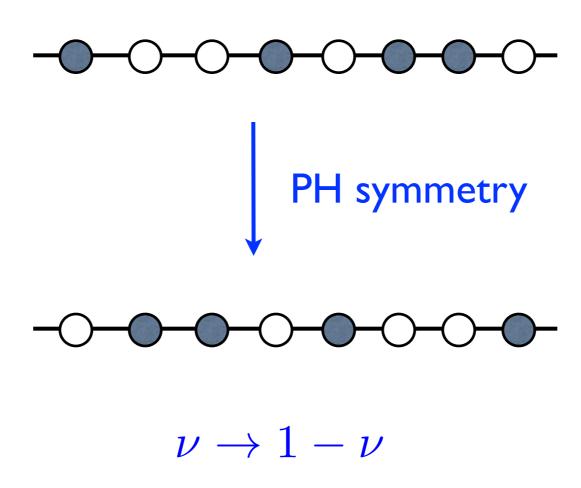




 Despite its success, the HLR theory suffers from a flaw: lack of particle-hole symmetry

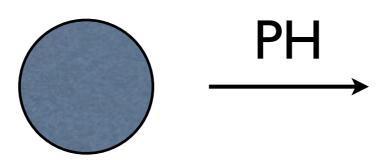
Particle-hole symmetry

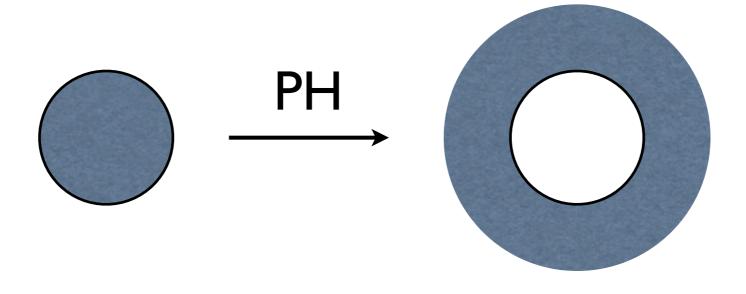
Girvin 1984

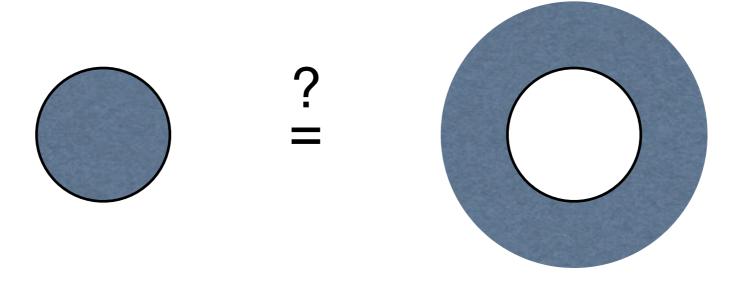


Can be formalized mathematically

exact symmetry the Hamiltonian on the LLL, when mixing of higher LLs negligible





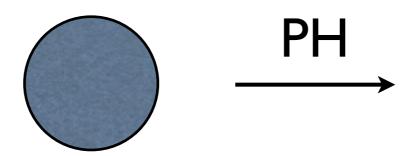


- The particle-hole asymmetry of the HLR theory has been noticed early on Kivelson et al 1997
- No conclusive resolution has emerged
- Maybe ground state at nu=1/2 breaks PH symmetry spontaneously? Barkeshli Mulligan Fisher 2015
- By now, numerical and experimental evidence:
 nu=1/2 state is particle-hole symmetric

The proposal

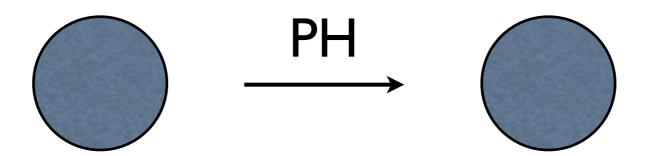
CF has Berry phase pi around the Fermi surface

The proposal



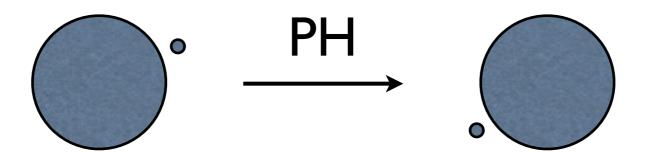
CF has Berry phase pi around the Fermi surface

The proposal



CF has Berry phase pi around the Fermi surface

The proposal



CF has Berry phase pi around the Fermi surface

Berry phase in Fermi liquids

• Original Fermi liquid theory (Landau, 1956)

$$\epsilon = \epsilon_0 (p) + \delta \epsilon (p),$$

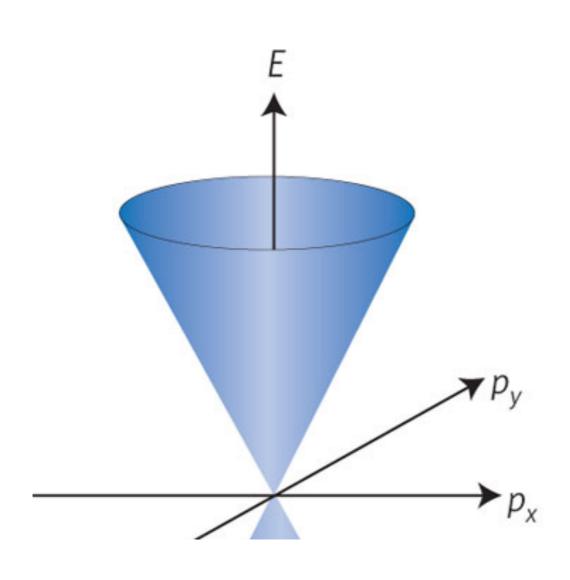
н $\epsilon_0 (p)$ соответствует распределению $n_0 (p)$ на с δn формулой вида (см. [1])

 $\delta \epsilon (p) = \mathrm{Sp}_{\sigma'} \int f(\mathbf{p}, \mathbf{p}') \, \delta n' \, d\tau', \quad d\tau = \frac{d^3 \mathbf{p}}{(2\pi\hbar)^3}.$

$$\frac{\partial n}{\partial t} + \frac{\partial n}{\partial \mathbf{r}} \, \frac{\partial \epsilon}{\partial \mathbf{p}} - \frac{\partial n}{\partial \mathbf{p}} \, \frac{\partial \epsilon}{\partial \mathbf{r}} = I(n),$$

Recent understanding: Landau's Fermi liquid theory has to be supplemented by the Berry phase of quasiparticles

Example: Dirac cone

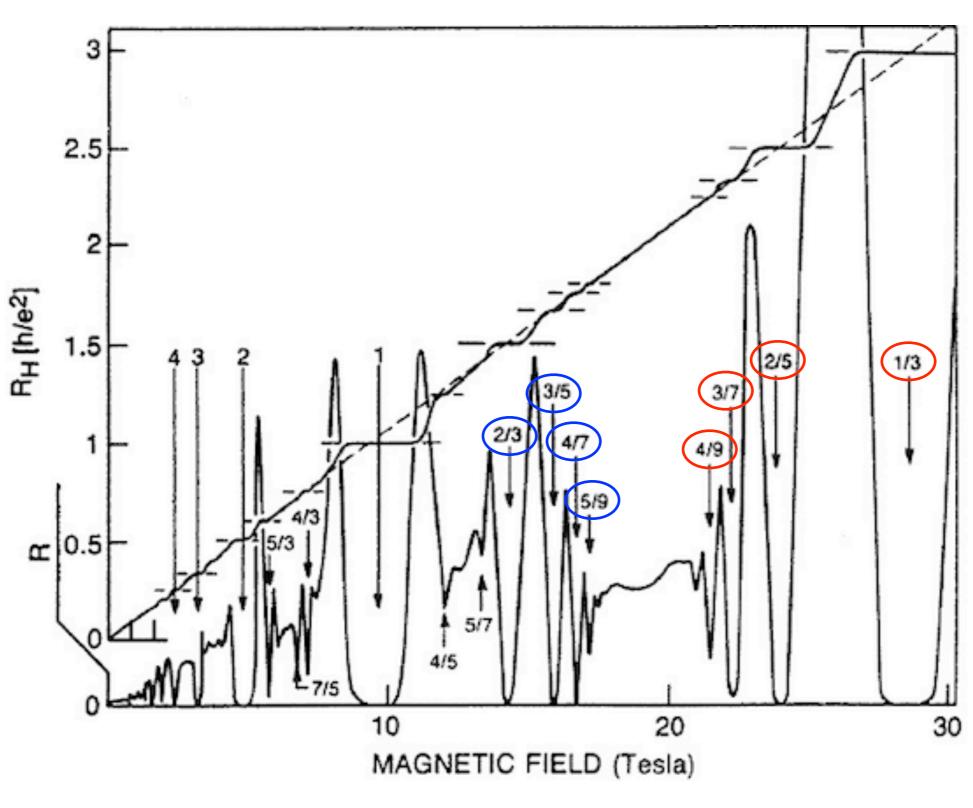


$$(\boldsymbol{\sigma} \cdot \mathbf{p})u_{\mathbf{p}} = |\mathbf{p}|u_{\mathbf{p}}$$

$$u_{\mathbf{p}}^{\dagger} \nabla_{\mathbf{p}} u_{\mathbf{p}} = i \mathbf{A}(\mathbf{p})$$

$$\oint \mathbf{A} \cdot d\mathbf{p} = \pi$$

Jain's sequences



$$\nu = \frac{n+1}{2n+1} \qquad \nu = \frac{n}{2n+1}$$

Standard flux attachment: $\nu_{\text{eff}}^{-1} = \nu^{-1} - p$

$$\nu_{\rm eff}^{-1} = \nu^{-1} - \gamma$$

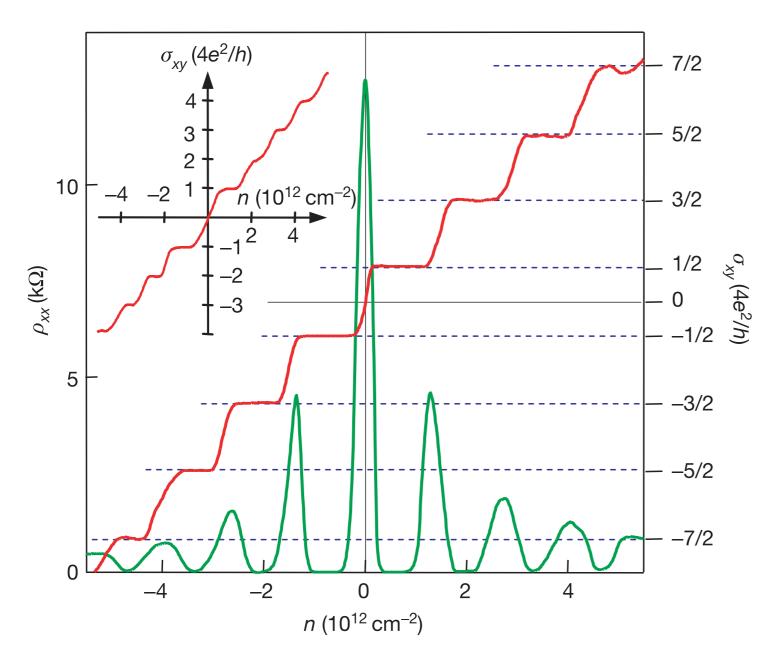
$$\nu = \frac{n}{2n+1} \qquad \qquad \nu_{\text{eff}} = n$$

$$\nu = \frac{n+1}{2n+1}$$
 $\nu_{\text{eff}} = -(n+1)$

In the new picture, these two fractions correspond to

$$\nu_{\rm CF} = \pm \left(n + \frac{1}{2}\right)$$

IQHE in graphene



$$\sigma_{xy} = \left(n + \frac{1}{2}\right) \frac{e^2}{2\pi\hbar}$$

Figure 4 | **QHE for massless Dirac fermions.** Hall conductivity σ_{xy} and longitudinal resistivity ρ_{xx} of graphene as a function of their concentration at $B=14\,\mathrm{T}$ and $T=4\,\mathrm{K}$. $\sigma_{xy}\equiv (4e^2/h)\nu$ is calculated from the measured

Alternative to flux attachment

- Flux attachment breaks PH symmetry
- Alternative: fermionic particle-vortex duality

$$\mathcal{L}_A = i\bar{\Psi}\gamma^{\mu}(\partial_{\mu} - iA_{\mu})\Psi$$

$$\mathcal{L}_B = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + 2ia_{\mu})\psi + \frac{1}{2\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda}$$

Particle-vortex duality

DTS; Metlitski, Vishwanath; Senthil, Wang

original fermion

composite fermion

magnetic field

density

density

magnetic field

$$S = \int d^3x \left[i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + 2ia_{\mu})\psi + \frac{1}{2\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda} + \cdots \right]$$

$$j^{\mu} = \frac{\delta S}{\delta A_{\mu}} = \frac{1}{2\pi} \epsilon^{\mu\nu\lambda} \partial_{\nu} a_{\lambda}$$

$$\frac{\delta S}{\delta a_0} = 0 \longrightarrow \langle \psi \bar{\gamma}^0 \psi \rangle = \frac{B}{4\pi}$$

Jain's sequences again

$$2\nu_B = \frac{1}{2\nu_A}$$

$$\nu_A = \nu - \frac{1}{2}$$

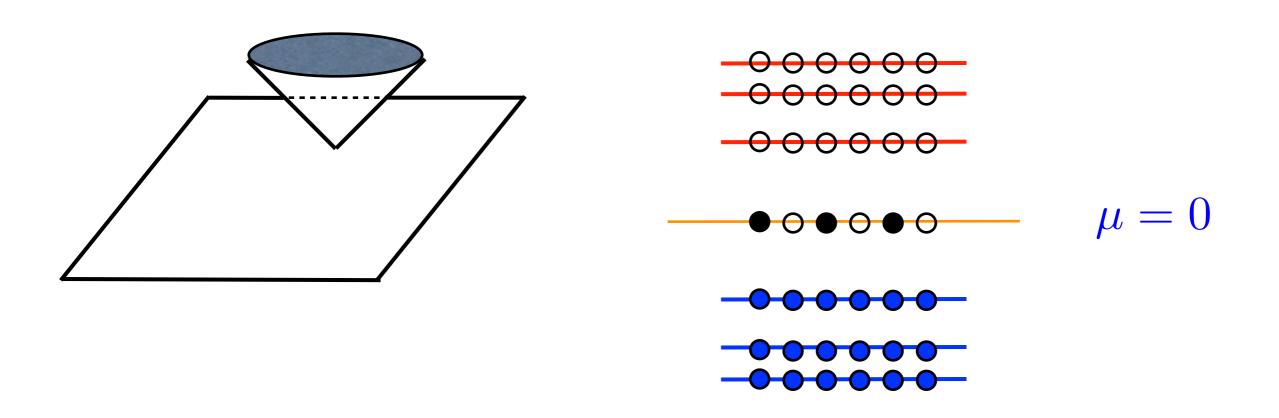
$$\nu = \frac{n}{2n+1} \to \nu_B = n + \frac{1}{2}$$

$$\nu = \frac{n+1}{2n+1} \to \nu_B = -\left(n + \frac{1}{2}\right)$$

Comments on particle-vortex duality

- Bosonic counterpart: duality between XY model and abelian Higgs model
 - strong numerical evidence
 - specific for d=3, N=1
- Fermionic particle-vortex duality: no numerical evidence (yet?) at zero B field
 - small N: chiral symmetry breaking in dual theory
 - strong interactions needed for original fermions?
 - magnetic field quenches kinetic energy,

Relativistic model with FQHE



$$S = \int d^3x \, i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - iA_{\mu})\psi - \frac{1}{4e^2} \int d^4x \, F_{\mu\nu}^2$$

Low-energy description of ground state at zero chemical potential, finite B field

Consequences

- Exact particle hole symmetry in linear response
 - at $\nu = \frac{1}{2}$, $\sigma_{xy} = \frac{1}{2}$ exactly (HLR: ρ_{xy} =2)
- New particle-hole symmetric gapped nonabelian state at V=1/2:

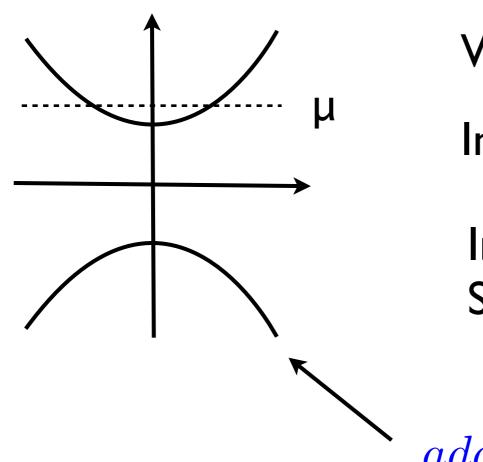
$$\langle \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta} \rangle \neq 0$$

Pfaffian and anti-Pfaffian states: pairing of Dirac CFs with angular momentum 2 and -2

Dirac composite fermions

- Emergent gauge field
- No Chern-Simons interaction ada
 - ada would break CP and CT
- Composite fermion without flux attachment
- composite fermions have Berry phase π around Fermi surface

HLR theory as the NR limit



When CP is broken, CF has mass

In the NR limit: NR action for CF

Integrating out Dirac sea: Chern-Simons interaction between CF

Standard HLR theory is reproduced Particle-hole symmetry broken by the CF Dirac mass

Conclusion and open questions

- PH symmetry: a challenge for CF picture
- Proposal: Dirac CF with gauge, non-CS interaction
- particle-vortex duality instead of flux attachment
- experimentally verifiable consequences
- Open questions:
 - derivation of the effective theory
 - experimental measurement of the Berry phase: cold atoms?