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Outline

• Scale Invariance in Expanding Fermi gases:
– Ballistic

 
expansion of a hydrodynamic

 
gas

• Shear Viscosity measurement
– Local viscosity from trap-averaged viscosity

Topics

• Spin-imbalanced Quasi-two-dimensional Fermi gas
– Failure of true 2D-BCS theory
– 2D-polaron model of the thermodynamics
– Phase-transition to a balanced core



Strongly Interacting Fermionic
 

Systems

Neutron 
 Star

Quark Gluon Plasma Ultra‐Cold 
Fermi Gas

Why Study Strongly Interacting
Fermi Gases?

Layered High Temperature Superconductors



Optically Trapped Fermi gas

agnet coils

Our atom: Fermionic



Feshbach
 

Resonance
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Singlet Diatomic Potential: Electron Spins Anti-Parallel
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Triplet Diatomic Potential: Electron Spins Parallel
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SCALE INVARIANT!



Really strong interactions!

Shock
Fronts

• Trapped gas is divided into two

 

clouds with a repulsive optical potential.

• The repulsive potential is extinguished, the two clouds accelerate towards 
each other and collide.

Strong Interactions: 
Shock waves in Fermi gases



Scale Invariance 
in Expanding Resonant Fermi Gases

Compressed 
“Balloons”

Expanded “Balloons”

2
coll 4 dB 



Scale-invariance: Connecting 
Strongly to Weakly Interacting

• Can we connect elliptic flow
 

of a resonant
 

gas 
to the ballistic flow of an ideal gas in 3D?

• Anti-de Sitter-Conformal Field Theory
Correspondence:

 
Connects strongly

 
interacting 

fields in 4-dimensions to weakly
 

interacting gravity 
in 5-dimensions.

For both, the pressure is 2/3 of the energy density:

03
2  pp Scale Invariant?

Elliptic Flow: Observe 2 dimensions + time



Measuring expanding clouds in 3D

• Measure all three cloud radii using two cameras.

Trap with 
1:3 transverse (x-y)

aspect ratio



E/EF

 

=0.52
E/EF

 

=0.75
E/EF

 

=1.22
E/EF

 

=1.69
Ballistic

832 G

527.5 G

Transverse Aspect Ratio versus Time
for a Unitary Fermi gas 

Energy Dependent!
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Scale Invariance: Ideal Gas
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Defining Scale Invariant Flow

Cloud average
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Scale Invariance: Resonant Gas

Hydrodynamic gas:

2
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Elliptic flow
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How does the mean square radius evolve in time? 2222 zyx r

)(rU trap potential



Hydrodynamic Expansion

From the Navier-Stokes

 

and continuity

 

equations, it is easy to 
show that a single component fluid obeys:
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Shear and Bulk Viscosity

PressureTrap potential

Stream KE

Need to find the volume integral of the pressure:

Equilibrium: 00
33 Upd

N
 rr Measured

 

from the cloud 
profile and trap parameters
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Global Energy Conservation

Internal Energy (t)

Stream KE (t)

Internal Energy (t = 0+)

  0
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Just after

 

the optical trap is abruptly extinguished*: t = 0+ :



Scale Invariant Expansion
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Using the  hydrodynamic equations and energy conservation it 
is easy to show that

Initial trap potential Bulk viscosityConformal symmetry
breaking Dp

3
2 pp



Scale Invariance!
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The bulk viscosity also vanishes so

Can we observe ballistic flow of an elliptically expanding gas?

Ballistic Flow!



Expansion time

Scale-invariant “Ballistic”
 

Expansion
of a Resonant Fermi gas 
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The aspect ratio exhibits elliptic flow, 
but the mean-square cloud radius expands 
Ballistically: SCALE-INVARIANT!
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Shear and Bulk Viscosity: 
Unitary Fermi Gas

Shear viscosity
Bulk viscosity nBB  

nSS  

The bulk viscosity vanishes!



Quantum Viscosity 

n = density ( particles/cc)n Viscosity:

dimensionless shear viscosity coefficient

Water:
 

n = 3.3 x 1022 n300

Air:
 

n = 2.7 x 1019 n6000

Fermi gas:
 

n = 3.0 x 1013 n4.0

Nuclear Matter:
 

n = 3.0 x 1038 n?



Measuring Shear Viscosity: 
Scaling Approximation
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Aspect Ratio versus Expansion Time
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Shear Viscosity at Resonance
versus Reduced Temperature

Transition to
 

Superfluid



High Temperature Scaling of the 
Cloud-Averaged Viscosity 

3.60 0
3/2

Red: For trap that is 
50

 

times deeper
Science 331, 58 
(2011)

Blue: New Data

Universal Scaling!



Cloud Averaged Shear Viscosity 
versus Reduced Temperature

Reduced temperature
at the trap center

Transition to

 
Superfluid

*EoS

 

from Ku et al., Science, 2012



Local
 

Shear Viscosity: 
Linear Inverse Problem

Equivalent matrix

 
equation: Cαα 

  mmmm Ψββ αCαCααα Τ   )1(1

Can be solved iteratively

For each trap averaged shear viscosity measured at reduced 
temperature 0j , we create a linear

 
equation  
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Determining the Local Shear 
Viscosity: Finite Volume
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Divergent!



Image Processing Technique
 Iterative Matrix Inversion

  mSmmm Ψββ αCαCααα Τ   )1(1



Iterative Solution for Test Function

  mSmmm Ψββ αCαCααα Τ   )1(1
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Local Shear Viscosity
 versus Reduced Temperature

Structure appears at
low temperature

High Temperature Limit


 

= 2.77 θ3/2



Local Shear Viscosity
 (Comparison to Theory)

“Measured”

Kinetic theory


 

= 2.77 θ3/2

Guo

 

et al., PRL 2011

Enss

 

et al., Annals 2011
(Diagrammatic Kubo 
formula)

Wlazłowski

 

et al., PRL 
2012 (Monte Carlo)



Derivative of the Local Shear Viscosity  
with respect to Reduced Temperature



*EoS

 

from Ku et al., Science, 2012

Ratio of the Local Shear Viscosity 
to the Entropy Density*

String theory limit
Kovtun,Son,Starinets
PRL 2005



•
 

Determined Local Shear Viscosity

-
 

Image processing techniques

-
 

Tests of non-perturbative
 

many-body  theory

Summary: 3D Hydrodynamics

• Scale-Invariant Strongly Interacting Fermi Gas
-

 
Tests theories of scale-invariant hydrodynamics

• Measured Cloud-Averaged Shear Viscosity
-

 
Single-shot method to find initial cloud size
(temperature) and cloud-averaged 
shear viscosity self consistently



Quasi-2D
 

Fermi Gases

Enhancement
 

of the superfluid
 

transition 
temperature compared to true 2D

 
materials:

• In copper oxide and organic films, electrons 
are confined in a quasi-two-dimensional geometry

• Complex, strongly interacting many-body systems
• Phase diagrams are not well understood
• Exotic superfluids

Search for high temperature superconductivity 
in layered

 
materials:

• Heterostructures
 

and inverse layers
• Quasi-2D organic superconductors
• Intercalated structures and films of transition metals



Creating a Quasi-2D Fermi gas 

Transverse Density Profiles: )(2 Dn
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Two-Dimensional Gas
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Two-dimensional

n = 0

n = 1

n = 2

0
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Ns

Quasi-two-dimensional

0
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Ns0
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Quasi-Two-Dimensional Gas

What is the ground state of a 
quasi-2D strongly-interacting 
Fermi gas?
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Column Densities versus N2
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= 2D dimer

 

binding energy EF

 

= 2D ideal gas Fermi energy



Majority
 

and Minority
 

Radii
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binding energy EF

 

= 2D ideal gas Fermi energy
Ideal gas Thomas-Fermi radius -
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Majority
 

and Minority
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2D-BCS Theory Fails!



Polaron
 

Gas Model
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single spin down cloud of particle-hole pairs

• Chevy’s Fermi-polaron



2D-Polaron Thermodynamics

• Free energy density-imbalanced gas: )2(2222
1
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2D Fermi-Polaron

Analytic Approx.

Shahin

 

Bour, Dean Lee, H.-W. Hammer, and Ulf-G. Meiner
arXiv:1412.8175v2 (2014)

Meera

 

M. Parish and Jesper

 

Levinson
Phys. Rev. A 87, 033616 (2013)

Polaron
 

Energy: 2D-Fermi Polaron
vs

 
Analytic Approximation

Lianyi

 

He, Haifeng

 

Lu, Gaoqing

 

Cao, Hui

 

Hu, Xia-Ji

 

Liu
arXiv:1506.07156v1 (2015)
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Measuring the 2D Pressure
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from the column densities. 



2D-Pressure Balanced Gas

ideal

)0(
p
p

2D-polaron model

2D-BCS



2D-Pressure—Wide Range 

A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014).

-

 

Polaron
Model



2D-Central Density Ratio

• Transition to balanced core:
• Not predicted!

Polaron model

Ideal gas
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Summary: Quasi-2D Fermi Gas

• 2D Polaron model explains several features of the 
density profiles in the quasi-2D regime. 

• 2D Polaron model with the analytic approximation is 
too crude to predict the transition to a balanced core. 

• Measurements with imbalanced mixtures provide
the first benchmarks for predictions of the 
phase diagram for quasi-2D Fermi gases. 

• 2D BCS theory for a True 2D system 
fails

 
in the Quasi-2D regime.
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