

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases

John E. Thomas NC State University

JETLab Group

J. E. Thomas

Graduate Students:	Support:	Research Scholars:
Ethan Elliot	NSF	James Joseph
Willie Ong		Ilya Arakelian
Chingyun Cheng		
Arun Jaganathan	AFOSR	
Nithya Arunkumar		
Jayampathi Kangara		
Lorin Baird		

Outline

Topics

- Scale Invariance in Expanding Fermi gases: – Ballistic expansion of a hydrodynamic gas
- Shear Viscosity measurement
- Local viscosity from trap-averaged viscosity
- Spin-imbalanced Quasi-two-dimensional Fermi gas
- Failure of true 2D-BCS theory
- -2D-polaron model of the thermodynamics
- Phase-transition to a balanced core

Why Study Strongly Interacting Fermi Gases?

Strongly Interacting Fermionic Systems

Neutron Star

Quark Gluon Plasma

Ultra-Cold Fermi Gas

Layered High Temperature Superconductors

Optically Trapped Fermi gas

Feshbach Resonance

832 G-Resonant Scattering!

 $\sigma_{\rm coll} = 4\pi \lambda_{dB}^2$

Strong Interactions: Shock waves in Fermi gases

- Trapped gas is divided into two clouds with a repulsive optical potential.
- The repulsive potential is extinguished, the two clouds accelerate towards each other and collide.

Really strong interactions!

$$\sigma_{\rm coll} = 4\pi \lambda_{dB}^2$$

Compressed "Balloons"

Expanded "Balloons"

Scale-invariance: Connecting Strongly to Weakly Interacting

- Anti-de Sitter-Conformal Field Theory Correspondence: Connects strongly interacting fields in 4-dimensions to weakly interacting gravity in 5-dimensions.
 - Can we connect elliptic flow of a resonant gas to the ballistic flow of an *ideal* gas in 3D?

For both, the pressure is 2/3 of the energy density:

$$\Delta p \equiv p - \frac{2}{3}\varepsilon = 0$$

Scale Invariant?

Elliptic Flow: Observe 2 dimensions + time

• Measure *all three* cloud radii using two cameras.

Transverse Aspect Ratio versus Time

Scale Invariance: Ideal Gas

<u>Ideal gas:</u> $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$ Ballistic flow

How does the *mean square radius* evolve in time? $\langle \mathbf{r}^2 \rangle = \langle x^2 + y^2 + z^2 \rangle$

Virial Theorem:

$$m\left\langle \mathbf{v}^{2}\right\rangle _{0}=\left\langle \mathbf{r}\cdot\nabla\mathbf{U}\right\rangle _{0}$$

$$\left\langle \mathbf{r}^{2} \right\rangle = \left\langle \mathbf{r}^{2} \right\rangle_{0} + \frac{t^{2}}{m} \left\langle \mathbf{r} \cdot \nabla \mathbf{U} \right\rangle_{0}$$

Ballistic Flow

Defining Scale Invariant Flow

$$\frac{m(\langle \mathbf{r}^2 \rangle - \langle \mathbf{r}^2 \rangle_0)}{\langle \mathbf{r} \cdot \nabla \mathbf{U} \rangle_0} = t^2$$

t = expansion time

Defines Scale Invariant Flow!

Scale Invariance: Resonant Gas

How does the *mean square radius* evolve in time? $\langle \mathbf{r}^2 \rangle = \langle x^2 + y^2 + z^2 \rangle$

Hydrodynamic Expansion

From the Navier-Stokes and continuity equations, it is easy to show that a single component fluid obeys:

Stream KE

Shear and Bulk Viscosity

Equilibrium:

$$\frac{3}{N} \int d^3 \mathbf{r} \ p_0 = \left\langle \mathbf{r} \cdot \nabla U \right\rangle_0$$

Measured from the cloud profile and trap parameters

Need to find the volume integral of the pressure:

$$p = \frac{2}{3}\varepsilon + \Delta p$$

Global Energy Conservation

Just after the optical trap is abruptly extinguished*: $t = 0^+$:

Stream KE (t)

$$\frac{1}{N}\int d^3\mathbf{r}\,\mathcal{E} + \frac{m}{2}\left\langle \mathbf{v}^2 \right\rangle = \frac{1}{N}\int d^3\mathbf{r}\,\mathcal{E}_0$$

Internal Energy (t)

Internal Energy (t = 0⁺)

PHYBICS

Using the hydrodynamic equations and energy conservation it is easy to show that

$$\frac{d^2}{dt^2} \frac{m \langle \mathbf{r}^2 \rangle}{2} = \langle \mathbf{r} \cdot \nabla \mathbf{U} \rangle_0 + \frac{3}{N} \int d^3 \mathbf{r} \left(\Delta \mathbf{p} - \Delta \mathbf{p}_0 \right) - \frac{3}{N} \int d^3 \mathbf{r} \zeta_B \nabla \cdot \mathbf{v}$$

Initial trap potential

Conformal symmetry breaking ∆p

Bulk viscosity

$$\Delta p \equiv p - \frac{2}{3}\varepsilon$$

Scale Invariance!

Resonant gas
$$\Delta p \equiv p - \frac{2}{3}\varepsilon = 0$$

The bulk viscosity also vanishes so

$$\left\langle \mathbf{r}^{2} \right\rangle = \left\langle \mathbf{r}^{2} \right\rangle_{0} + \frac{t^{2}}{m} \left\langle \mathbf{r} \cdot \nabla \mathbf{U} \right\rangle_{0}$$

Ballistic Flow!

Can we observe *ballistic* flow of an *elliptically* expanding gas?

Scale-invariant "Ballistic" Expansion

Shear and Bulk Viscosity: Unitary Fermi Gas

Quantum Viscosity

<u>Viscosity:</u> $\eta = \alpha \hbar n$ n = density (particles/cc)

dimensionless shear viscosity coefficient

Water:n =
$$3.3 \times 10^{22}$$
 $\eta = 300 \hbar n$ Air:n = 2.7×10^{19} $\eta = 6000 \hbar n$ Fermi gas:n = 3.0×10^{13} $\eta = 0.4 \hbar n$ Nuclear Matter:n = 3.0×10^{38} $\eta = ? \hbar n$

Measuring Shear Viscosity: Scaling Approximation

$$n(x, y, x, t) = \frac{n_0(x/b_x, y/b_y, z/b_z)}{\Gamma} \qquad \Gamma = b_x b_y b_z$$
Volume scale factor
$$\mathbf{v}_i = x_i \dot{b}_i / b_i \qquad \text{Velocity field is linear in the spatial coordinates}$$

$$\left\langle x_i^2 \right\rangle = \left\langle x_i^2 \right\rangle_0 b_i^2(t) \qquad \overline{\omega_i^2} = \frac{\left\langle \mathbf{r} \cdot \nabla U \right\rangle_0}{3m \left\langle x_i^2 \right\rangle_0} \qquad \sigma_{ii} = 2\frac{\dot{b}_i}{b_i} - \frac{2}{3}\frac{\dot{\Gamma}}{\Gamma}$$

$$\left\langle \mathbf{v}_i^2 \right\rangle = \left\langle x_i^2 \right\rangle_0 \dot{b}_i^2(t) \qquad \text{Cloud-averaged shear viscosity coefficient}$$

$$\vec{b}_i = \frac{\overline{\omega_i^2}}{\Gamma^{2/3} b_i} \left[1 + C_Q(t) + C_{\Delta p}(t) \right] - \frac{\hbar \left\langle \alpha_S \right\rangle \sigma_{ii}}{m \left\langle x_i^2 \right\rangle_0} b_i - \omega_{imag}^2 b_i$$

Shear Viscosity at Resonance versus Reduced Temperature

High Temperature Scaling of the Cloud-Averaged Viscosity

Cloud Averaged Shear Viscosity versus Reduced Temperature

Local Shear Viscosity: Linear Inverse Problem

For each trap averaged shear viscosity measured at reduced temperature θ_{0i} , we create a linear equation

$$\left\langle \alpha \right\rangle_{j} = \sum_{i} C_{ji} \alpha_{i}$$
 Discrete Local α
 $\theta_{i} \rightarrow \theta_{i+1}$

Equivalent matrix equation:

$$\langle \alpha \rangle = \mathbf{C} \alpha$$

Can be solved iteratively

$$\boldsymbol{\alpha}_{m+1} = (1-\beta)\boldsymbol{\alpha}_m + \beta \boldsymbol{\Psi} \left[\boldsymbol{\alpha}_m + \mathbf{C}^{\mathrm{T}} \left(\left\langle \boldsymbol{\alpha} \right\rangle - \mathbf{C} \bullet \boldsymbol{\alpha}_m \right) \right]$$

Determining the *Local* Shear Viscosity: Finite Volume Average

Image Processing Technique Iterative Matrix Inversion

$$\boldsymbol{\alpha}_{m+1} = (1-\beta)\boldsymbol{\alpha}_m + \beta \boldsymbol{\Psi} \left[\boldsymbol{\alpha}_m + \mathbf{C}^{\mathsf{T}} \left(\left\langle \boldsymbol{\alpha}_S \right\rangle - \mathbf{C} \bullet \boldsymbol{\alpha}_m \right) \right]$$

$$\boldsymbol{\alpha}_{m+1} = (1-\beta)\boldsymbol{\alpha}_m + \beta \boldsymbol{\Psi} \left[\boldsymbol{\alpha}_m + \mathbf{C}^{\mathsf{T}} \left(\left\langle \boldsymbol{\alpha}_S \right\rangle - \mathbf{C} \bullet \boldsymbol{\alpha}_m \right) \right]$$

Local Shear Viscosity versus Reduced Temperature

Local Shear Viscosity (Comparison to Theory)

Derivative of the Local Shear Viscosity with respect to Reduced Temperature

Ratio of the Local Shear Viscosity to the Entropy Density*

- Scale-Invariant Strongly Interacting Fermi Gas
 - Tests theories of scale-invariant hydrodynamics
- Measured Cloud-Averaged Shear Viscosity
 - Single-shot method to find initial cloud size (temperature) and cloud-averaged shear viscosity self consistently
- Determined Local Shear Viscosity
 - Image processing techniques
 - Tests of non-perturbative many-body theory

Search for high temperature superconductivity in layered materials:

- In copper oxide and organic films, electrons are confined in a quasi-two-dimensional geometry
- Complex, strongly interacting many-body systems
- Phase diagrams are not well understood
- Exotic superfluids

Enhancement of the superfluid transition temperature compared to true 2D materials:

- Heterostructures and inverse layers
- Quasi-2D organic superconductors
- Intercalated structures and films of transition metals

Creating a Quasi-2D Fermi gas

Two-lowest hyperfine states of fermionic ⁶Li in CO₂ laser trap at T< 0.2 T_F:

Measure Column Density:

$$n_{c}(x) = \int_{-\infty}^{\infty} dy \, n_{2D}(\sqrt{x^{2} + y^{2}})$$

N₁ = Majority # (800 per site)

N₂ = Minority #

Transverse Density Profiles: $n_{2D}(\rho)$

Two-Dimensional Gas

$$N_{s} = \int_{0}^{\mu_{\perp 0}} \frac{d\varepsilon_{\perp}\varepsilon_{\perp}}{(h\upsilon_{\perp})^{2}} \qquad \qquad \mu_{\perp 0} = E_{F} \equiv h\upsilon_{\perp}\sqrt{2N_{s}} \qquad \begin{array}{l} \text{2D Transverse} \\ \text{Fermi Energy} \end{array}$$
2D Density of States
$$\underline{\text{True 2D if:}} \qquad E_{F} << h\upsilon_{z}$$

Quasi-Two-Dimensional Gas

 $\mu_{\perp 1}$

Column Densities versus N₂/N₁ PI B B

Majority and Minority Radii

Majority and Minority Radii

PHYBICS

Polaron Gas Model

2-Collision with the 1-Fermi sea

2D-Polaron Thermodynamics

• Free energy density-imbalanced gas: *f*

• Polaron energy:

$$E_p(2) = y_m(q_1)\varepsilon_{F1}$$

 $\varepsilon_{F1} = \frac{2\pi\hbar^2}{m} n_1 \qquad q_1 \equiv \frac{\varepsilon_{F1}}{E_b} \qquad y_m(q_1) = \frac{-2}{\log(1+2q_1)}$

$$f = \frac{1}{2}n_1\varepsilon_{F1} + \frac{1}{2}n_2\varepsilon_{F2} + n_2E_p(2)$$

Ideal Fermi gas Minority Polaron
Energy

Chemical potentials:
$$\mu_{a} = \frac{\partial f}{\partial f}$$
 $\mu_{a} = \frac{\partial f}{\partial f}$

nical potentials:
$$\mu_1 = \frac{\partial f}{\partial n_1}$$
 $\mu_2 = \frac{\partial f}{\partial n_2}$

• Pressure:
$$p = n_1 \mu_1 + n_2 \mu_2 - f$$

Polaron Energy: 2D-Fermi Polaron vs Analytic Approximation

Meera M. Parish and Jesper Levinson Phys. Rev. A 87, 033616 (2013)

Shahin Bour, Dean Lee, H.-W. Hammer, and Ulf-G. Meiner arXiv:1412.8175v2 (2014)

Lianyi He, Haifeng Lu, Gaoqing Cao, Hui Hu, Xia-Ji Liu arXiv:1506.07156v1 (2015)

Majority and Minority Radii

Measuring the 2D Pressure

Force balance:

Pressure at trap center

Harmonic Trap:

$$U(\rho) = \frac{1}{2}m\omega_{\perp}^2\rho^2$$

Ideal 2D Pressure (for density n_{2D})

$$P_{\text{ideal}} = \frac{1}{2} n_{2D} \varepsilon_F$$

$$\frac{P(0)}{P_{\text{ideal}}(0)} = \frac{n_{\text{ideal}}^2(0)}{n_{2D}^2(0)}$$

= 1 for an Ideal Fermi gas:

Determine $n_{2D}(0)$ from the column densities.

2D-Pressure Balanced Gas

2D-Pressure—Wide Range

A. Turlapov, Phys. Rev. Lett. **112**, 045301 (2014).

2D-Central Density Ratio

- Polaron model
- --- Ideal gas

Transition to balanced core:Not predicted!

Summary: Quasi-2D Fermi Gas

- 2D BCS theory for a <u>True</u> 2D system *fails* in the <u>Quasi-2D</u> regime.
- 2D Polaron model explains several features of the density profiles in the quasi-2D regime.
- 2D Polaron model with the analytic approximation is too crude to predict the transition to a balanced core.
- Measurements with imbalanced mixtures provide the first benchmarks for predictions of the phase diagram for quasi-2D Fermi gases.

Birthday Party Dec-2014

