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The Standard Model — a relativistic quantum field theory

SU(3) Quantum Chromodynamics (QCD)
Quarks

Gluon

Baryon

Nucleus
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Wilson’s lattice Quantum Chromodynamics (QCD) verifies
confinement of quarks and gluons inside protons and neutrons

and confirms the experimentally observed hadron spectrum



Can heavy-ion collision physics or nuclear astrophysics benefit
from quantum simulations in the long run?
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The spin 1
2

quantum Heisenberg model

Quantum spins [Sa
x , S

b
y ] = iδxyεabcS

c
x and their Hamiltonian

H = J
∑

〈xy〉

~Sx · ~Sy

Partition function at inverse temperature β = 1/T

Z = Tr exp(−βH)



Low-energy effective action for antiferromagnetic magnons

S [~e] =

∫ β

0
dt

∫
d2x

ρs
2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)

Fit to analytic predictions of effective theory
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Optical lattice quantum simulation of quantum spin systems

J. Simon, W. S. Bakir, R. Ma, M. E. Tal, P. M. Preis, M. Greiner,
Nature 472 (2011) 307.
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Different descriptions of dynamical Abelian gauge fields:
Maxwell’s classical electromagnetic gauge fields

~∇ · ~E (~x , t) = ρ(~x , t), ~∇ · ~B(~x , t) = 0, ~B(~x , t) = ~∇× ~A(~x , t)

Quantum Electrodynamics (QED) for perturbative treatment

Ei (~x , t) = −i ∂

∂Ai (~x , t)
, [Ei ,Aj ] = iδij ,

[
~∇ · ~E − ρ

]
|Ψ[A]〉 = 0

Wilson’s U(1) lattice gauge theory for classical simulation

Uxy = exp

(
ie

∫ y

x
d~l · ~A

)
= exp(iϕxy ) ∈ U(1), Exy = −i ∂

∂ϕxy
,

[Exy ,Uxy ] = Uxy ,

[∑

i

(Ex ,x+î − Ex−î ,x)− ρ
]
|Ψ[U]〉 = 0

U(1) quantum link models for quantum simulation

Uxy = S+
xy , U†xy = S−xy , Exy = S3

xy ,

[Exy ,Uxy ] = Uxy , [Exy ,U
†
xy ] = −U†xy , [Uxy ,U

†
xy ] = 2E †xy
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U(1) gauge fields from spins 1
2

U = S+, U† = S−, E = S3.

r r
x x + î

Ex,i

Ux,i

Gauss law

Ring-exchange plaquette Hamiltonian

H = J

H = 0

D. Horn, Phys. Lett. B100 (1981) 149
P. Orland, D. Rohrlich, Nucl. Phys. B338 (1990) 647
S. Chandrasekharan, UJW, Nucl. Phys. B492 (1997) 455



Energy density of charge-anti-charge pair Q = ±2
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D. Banerjee, F.-J. Jiang, P. Widmer, UJW, JSTAT (2013) P12010.



“String theory on a chip” with superconducting circuits

D. Marcos, P. Rabl, E. Rico, P. Zoller,
Phys. Rev. Lett. 111 (2013) 110504 (2013).
D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, UJW, P. Zoller,
arXiv:1407.6066.



P-state excited Rydberg atoms in an optical lattice

0.1
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0.8
0.9

A. G. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Moessner,
P. Zoller, arXiv:1404.5326
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Analog quantum simulator proposals
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Digital quantum simulator proposals
M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, P. Zoller,
Phys. Rev. Lett. 102 (2009) 170502; Nat. Phys. 6 (2010) 382.
L. Tagliacozzo, A. Celi, P. Orland, M. Lewenstein,
Nature Communications 4 (2013) 2615.
L. Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein,
Ann. Phys. 330 (2013) 160.

Review on quantum simulators for lattice gauge theories

UJW, Annalen der Physik 525 (2013) 777, arXiv:1305.1602.



Hamiltonian for staggered fermions and U(1) quantum links

H = −t
∑

x

[
ψ†xUx ,x+1ψx+1 + h.c.

]
+ m

∑

x

(−1)xψ†xψx +
g2

2

∑

x

E 2
x ,x+1

Ux ,x+1 = bxb
†
x+1, Ex ,x+1 =

1

2

(
b†x+1bx+1 − b†xbx

)

Optical lattice with Bose-Fermi mixture of ultra-cold atoms
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Quantum simulation of the real-time evolution of string
breaking

1 2 3 4 5 6 7x

-0.3

0

0.3
Ex,x+1

0 0.1 0.2
tF/U

10-6

10-3

G

m=0.2
m=-0.2

0 15 30
t τ

-12

-6

0E

0 30 60 90
t τ

0

2

4 E

a) b)

c) d)

D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, UJW,
P. Zoller, PRL 109 (2012) 175302.
F. Hebenstreit, J. Berges, D. Gelfand, PRD 87 (2013) 201601.
S. Kühn, J. I. Cirac, M. Banuls, PRA 90 (2014) 042305.
T. Pichler, M. Dalmonte, E. Rico, P. Zoller, S. Montagnero,
arXiv:1505.04440.
V. Kasper, F. Hebenstreit, M. Oberthaler, J. Berges, arXiv:1506.01238.



U(N) quantum link operators

U ij = S ij
1 +iS ij

2 , U
ij† = S ij

1−iS
ij
2 , i , j ∈ {1, 2, . . . ,N}, [U ij , (U†)kl ] 6= 0

SU(N)L × SU(N)R gauge transformations of a quantum link

[La, Lb] = ifabcL
c , [Ra,Rb] = ifabcR

c , a, b, c ∈ {1, 2, . . . ,N2 − 1}

[La,Rb] = [La,E ] = [Ra,E ] = 0

Infinitesimal gauge transformations of a quantum link

[La,U] = −λaU, [Ra,U] = Uλa, [E ,U] = U

Algebraic structures of different quantum link models

U(N) : U ij , La, Ra,E , 2N2+2(N2−1)+1 = 4N2−1 SU(2N) generators

SO(N) : O ij , La, Ra, N2+2
N(N − 1)

2
= N(2N−1) SO(2N) generators

Sp(N) : U ij , La, Ra, 4N2+2N(2N+1) = 2N(4N+1) Sp(2N) generators

R. Brower, S. Chandrasekharan, UJW, Phys. Rev. D60 (1999) 094502



Low-energy effective action of a quantum link model

S [Gµ] =

∫ β

0
dx5

∫
d4x

1

2e2

(
Tr GµνGµν +

1

c2
Tr ∂5Gµ∂5Gµ

)
, G5 = 0

undergoes dimensional reduction from 4 + 1 to 4 dimensions

S [Gµ]→
∫

d4x
1

2g2
Tr GµνGµν ,

1

g2
=

β

e2
,

1

m
∼ exp

(
24π2β

11Ne2

)





SU(3) quantum link operator in terms of fermionic “rishons”

U ij
xy = c ixc

j†
y , i , j ∈ {1, 2, 3}

Ring-exchange Hamiltonian as a “rishon-abacus”



Optical lattice with ultra-cold alkaline-earth atoms
(87Sr or 173Yb) with color encoded in nuclear spin
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D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, UJW, P. Zoller,
Phys. Rev. Lett. 110 (2013) 125303



Expansion of a “fireball” mimicking a hot quark-gluon plasma
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How to reach the continuum limit?
Ladder of SU(N) quantum spins [T a

x ,T
b
y ] = iδxy fabcT

c
x

embodied with alkaline-earth atoms.

H = −J
∑

x∈A
[T a

xT
a∗
x+1̂

+ T a
xT

a
x+2̂

]− J
∑

x∈B
[T a∗

x T a
x+1̂

+ T a∗
x T a∗

x+2̂
]

x

y

L

L’

Very large correlation length ξ ∝ exp(4πL′ρs/cN)� L′.
Reduction to the (1 + 1)-d CP(N − 1) model at θ = nπ.

S [P] =

∫ β

0
dt

∫ L

0
dx Tr

{
1

g2

[
∂xP∂xP +

1

c2
∂tP∂tP

]
− nP∂xP∂tP

}

M. Dalmonte, C. Kraus, C. Laflamme, E. Rico, UJW, P. Zoller,
in preparation
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Nuclear Physics from SU(3) QCD
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1-d SO(3) quantum link model with adjoint triplet-fermions

H = −t
∑

x

[
ψi†
x O

ij
x ,x+1ψ

j
x+1 + h.c.

]
+ m

∑

x

(−1)xψi†
x ψ

i
x

SO(3) quantum links

O ij
x ,x+1 = σix ,Lσ

j
x+1,R

Encoding manifestly gauge invariant states obeying Gauss’ law



Restoration of chiral symmetry at baryon density nB ≥ 1
2

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  2  4  6  8  10  12  14

∆
E

 =
 E

B
+
 -

 E
B

-

L

∆E with constant Baryon density nB

nB = 0
nB = 1/2

nB = 1

M. Dalmonte, E. Rico, D. Banerjee, M. Bögli, P. Stebler, UJW, P. Zoller,
in preparation



Implementation with magnetic atoms (e.g. Cr), whose dipolar
interactions allow spin-spin interactions without superexchange

A. de Paz, A. Sharma, A. Chotia, E. Marechal, J. H. Huckans, P. Pedri,
L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra,
Phys. Rev. Lett. 111 (2013) 185305.
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Conclusions

• Quantum link models provide an alternative formulation of lattice
gauge theory with a finite-dimensional Hilbert space per link, which
allows implementations with ultra-cold atoms in optical lattices.

• Quantum link models can be formulated with manifestly gauge
invariant degrees of freedom that characterize the realization of the Gauss
law. “Encoding” these degrees of freedom, e.g. in magnetic atoms with
dipolar interactions, offers a new robust way to protect gauge invariance.

• Quantum simulator constructions have already been presented for the
U(1) quantum link model as well as for U(N) and SU(N) quantum link
models with fermionic matter, using ultra-cold Bose-Fermi mixtures or
alkaline-earth atoms.

• This allows the quantum simulation of the real-time evolution of string
breaking as well as the quantum simulation of “nuclear physics” and
dense “quark” matter, at least in a qualitative SO(3) toy model for QCD.

• Accessible effects may include chiral symmetry restoration, baryon
superfluidity, or color superconductivity at high baryon density, as well as
the quantum simulation of “nuclear” collisions.

• The path towards quantum simulation of QCD will be a long one.

However, with a lot of interesting physics along the way.
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