ISOSPIN DYNAMICS IN HEAVY ION COLLISIONS:

... from the Coulomb Barrier to the Quark-Gluon-Plasma

V.Baran, M.Colonna, M.Di Toro, G.Ferini, Th.Gaitanos, V.Giordano, V. Greco, Liu Bo, M.Zielinska-Pfabe, S. Plumari, V.Prassa, C.Rizzo, J.Rizzo, B.Sapienza and H.H.Wolter

LNS-Catania, NIPNE-HH Bucharest, Smith College Mass., IHEP Beijing, Univ. of Munich, Giessen, Thessaloniki.....and with the contribution of a very lively Etna mountain!

From the Phys.Dept. Jan.2002

Etna Double-Face, Aug.07

Erice "Nuclear Physics" School, Sept.08, ditoro@lns.infn.it

EOS of Symmetric and Neutron Matter

Iso-Tracer (1): **Isospin Transport and Chemical Potentials**

currents

$$j_n = D_n^{\rho} \nabla \rho + D_n^{I} \nabla I$$
$$j_p = D_n^{\rho} \nabla \rho + D_n^{I} \nabla I$$

 $D_q^{\rho} \propto \left(\frac{\partial \mu_q}{\partial \rho}\right)_{I,T}$

 $i = D^{\rho} \nabla \rho + D^{I} \nabla I$

drift

diffusion $D_q^I \propto \left(\frac{\partial \mu_q}{\partial I}\right)_{q T} \rightarrow (q = n, p)$

Isospin chemical $\mu_n - \mu_p = 4E_{sym}(\rho) I$ potential

Direct Access to Value and Slope of the Symmetry Energy at p !

Iso-Tracer (2): Symmetry Potentials and Effective Masses

Phys.Rep.410(2005)335-466

Near Saturation Properties

STOCHASTIC **MEAN FIELD TRANSPORT EQUATION:** VLASOV + NN-COLLISIONS and PAULI CORRELATIONS

Fluctuations

$$\frac{df(r, p, t)}{dt} = \frac{\partial f(r, p, t)}{\partial t} + \{f, h\} = I_{coll}[f] + \delta I_{coll}$$

$$h = \frac{p^2}{2m} + U[f] \qquad w^+(1-f) - w^- f$$
gain loss

Self-Consistent Mean Field

Phys.Rep. 389 (2004) 263 Phys.Rep. 410 (2005) 335

Coulomb Barrier

Isospin Equilibration: Dynamical Dipole in Fusion Reactions

E_{sym}(ρ) Sensitivity

Value (<ρ₀)

Restoring Force \rightarrow Centroid, Yield

Neutron Emission Reaction Mechanism NN cross sections Anisotropy

Damping

Charge Equilibration Dynamics:

Stochastic \rightarrow Diffusion

VS.

Collective \rightarrow Dipole Oscillations of the Di-nuclear System \Rightarrow Fusion Dynamics

Cooling on the way to Fusion

D.Pierroutsakou et al. PRC71(2005)

Bremsstrahlung: Quantitative estimations $\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left(\frac{NZ}{A}\right)^2 \left|D''(\omega)\right|^2$

V.Baran, D.M.Brink, M.Colonna, M.Di Toro, PRL.87(2001)

D.Pierroutsakou et al., New Medea Exp. at LNS-Catania,

Dipole Angular Distribution of the Extra-Yield: Anisotropy!!

B.Martin et al., PLB 664 (2008) 47

Density Plots on the Reaction Plane: Rotation of the Oscillation Axis vs the Beam Axis

arXiv:0807.4118[nucl-th]

Multifragmentation at the Fermi Energies

*E*_{sym}(*ρ*) Sensitivity: expansion phase, dilute matter

Isospin Distillation + Radial Flow

Low Density Slope

Asy-soft more effective

Asy-soft: compensation N-repulsion vs Z-coulomb \rightarrow Flat N/Z vs kinetic energy

Value: Symmetry Potentials

Isospin content of IMF in central collisions

N/Z: N =
$$\Sigma_i$$
 N_i, Z = Σ_i Z_i $3 \le Z_i \le 10$

Asy-stiff

Asy-soft

- + Radial Flow
- + Symmetry Potentials

→ 1.64

M.Colonna et al., INPC-Tokyo, NPA 805 (2008)

New Observables: N/Z vs fragment energy

Proton/neutron repulsion:
* n-rich clusters emitted at larger energy in n-rich systems (Δ'>Δ)
* flat spectra with Asy-soft

Primary fragment properties

Neck-fragmentation at the Fermi Energies

*E*_{sym}(*ρ*) Sensitivity: density gradient around normal density

Isospin Migration + Hierarchy

Slope just below ρ_0

Asy-stiff more effective

IMF Mass, N/Z vs alignement/v
transverse: \rightarrow time sequence of mechanisms:Spinodal \rightarrow neck instabilities \rightarrow fast fission \rightarrow cluster evaporation

Asy-stiff: neutron enrichment of neck IMFs

¹²⁴Sn+ ¹²⁴Sn 50 AMeV: average asymmetry

Isospin migration

Asy-soft

V.Baran et al., NPA703(2002)603 NPA730(2004)329

NECK FRAGMENTS: V_z-V_x CORRELATIONS

Large dispersion along transversal direction, $v_x \rightarrow$ time hierarchy ?

E.De Filippo et al. (Chimera Coll.) PRC 71 (2005)

 $^{124}Sn + {}^{64}Ni$

Non-equilibrium Effects in Fragmentation - IMF hierarchy vs. v_{\perp} : Isospin Tracer

ISOSPIN: Tracer of a "Continuous" Series of Bifurcations \rightarrow from multi- to neck-fragmentation up to PLF dynamical fission

Imbalance Ratios: Isospin Equilibration at Fermi Energies

*E*_{sym}(*ρ*) Sensitivity: asymmetry gradients

Caution: Disentangle isoscalar and isovector effects!

Rami imbalance ratio:

 $Mass(A) \approx Mass(B) ; N/Z(A) \neq N/Z(B)$

Isospin Observables: isoscaling $\alpha(\beta), \frac{N}{Z}, \frac{t}{{}^{3}He}, \frac{\pi^{-}}{\pi^{+}}...$

- vs. Centrality (fixed y) \rightarrow Kinetic Energy Loss
- vs. Rapidity (fixed centrality)
- vs. Transverse momentum (fixed y, centrality)?

Isospin equilibration: Imbalance ratios

B. Tsang et al. PRL 92 (2004)

Imbalance ratios: isoscalar vs. isovector effects

0.7

0.6

0.3

 E_{loss}/E_{CM}

0.2

0

0.1

0.5

0.4

Intermediate Energies

Multifragmentation at High Energies

*E*_{svm}(*ρ*) Sensitivity: compression phase

Isospin Distillation + Radial Flow

High Density Slope

Value: Symmetry Potentials

Asy-stiff more effective

Larger N-repulsion with Asy-stiff \rightarrow Flat N/Z vs kinetic energy

Problem: large radial flow \rightarrow few heavier clusters survive, with memory of the high density phase

Stochastic RBUU + Phase Space Coalescence

(E. Santini et al., NPA756(2005)468)

Isospin content of Fast Nucleon/Cluster emission, Isospin Flows

*E*_{sym}(*ρ*) Sensitivity: stiffness and symmetry potentials

Neutron/Proton Effective Mass Splitting

High p_t selections: - source at higher density - squeeze-out : v₂ - high kinetic energies

132Sn+124Sn 400AMeV Central \rightarrow nucleon, cluster Yield Ratios

Free nucleons vs 3H, 3He clusters: phase space coalescence,

200 events, 6000 Montecarlo samplings

reaction dynamics: Radial (squeeze-out) flows

Valentina Giordano, Master Thesis 2008

132Sn+124Sn 400AMeV Central → Yield Ratios : Asy-stiff + mass splitting

Crossing of the symmetry potentials for a matter at $\rho \approx 1.7 \rho_0$

132Sn+124Sn 400AMeV Central → Yield Ratios : Asy-soft + mass splitting

197Au+197Au 400AMeV SemiCentral → nucleon, cluster Elliptic Flows

Au+Au 400AMeV Semicentral

Elliptic proton-neutron flow difference vs p_t at mid-rapidity

Mean Fields Effective Masses **In-medium cross section**

Phys.Rep.410(2005)335-466

RBUU transport equation

Wigner transform ∩ Dirac + Fields Equation ■

Relativistic Vlasov Equation + Collision Term...

Self-Energy contributions to the inelastic channels!

Au+Au 1AGeV central: Phase Space Evolution in a CM cell

K production

Quantum Hadrodynamics (QHD) → Relativistic Transport Equation (RMF)

RMF Symmetry Energy: the δ - mechanism

$$E_{sym} = \frac{1}{6} \frac{k_F^2}{E_F^{*2}} + \frac{1}{2} \left[f_\rho - f_\delta \left(\frac{M^*}{E^*} \right)^2 \right] \rho_B \qquad f_{\rho,\delta} \equiv \left(\frac{g_{\rho,\delta}}{m_{\rho,\delta}} \right)^2$$

Liu Bo et al., PRC65(2002)045201

Constant Coupling Expectations

Self-Energies: kinetic momenta and (Dirac) effective masses

$$k_i^{*\mu} \equiv k_i^{\mu} - \Sigma_i^{\mu}$$
$$m_i^* \equiv M - \Sigma_{s,i}$$

$$\Sigma_{s}(n,p) = f_{\sigma}\sigma(\rho_{s}) \mp f_{\delta}\rho_{s3}$$
$$\Sigma^{\mu}(n,p) = f_{\omega}j^{\mu} \mp f_{\rho}j_{3}^{\mu}$$

Upper sign: n

$$(\rho, j)_3 \equiv (\rho, j)_p - (\rho, j)_n$$

Dirac dispersion relation: single particle energies

$$\rho_{B3} \equiv \rho_{Bp} - \rho_{Bn} < 0, n - rich$$

$$\mathcal{E}_i + M = +\Sigma_i^0 + \sqrt{k^2 + m_i^{*2}} \quad \longrightarrow \quad$$

n-rich: - Neutrons see a more repulsive vector field, increasing with f_{ρ} and isospin density

 $\mu_n - \mu_p \approx \left[4E_{sym}(kin) + 2\rho_B f_\rho \right] \alpha$

Chemical Potentials (zero temp.)

$$\mu_{i} = \sqrt{k_{F}^{2} + m_{i}^{*2}} + f_{\omega}\rho_{B} \mp f_{\rho}\rho_{B3}$$

asymmetry parameter

Isospin Flows at Relativistic Energies

*E*_{sym}(*ρ*): Sensitivity to the Covariant Structure

Enhancement of the Isovector-vector contribution via the Lorentz Force

High p_t selections: source at higher density \rightarrow Symmetry Energy at 3-4 ρ_0

Elliptic flow Difference

132Sn+132Sn, 1.5AGeV, b=6fm: NL- ρ & NL-(ρ + δ)

• Difference at high $p_t \iff first stage$

High p_t neutrons are emitted "earlier"

Equilibrium (ρ , δ) dynamically broken: Importance of the covariant structure

$$\frac{d\vec{p}_{p}^{*}}{d\tau} - \frac{d\vec{p}_{n}^{*}}{d\tau} \simeq 2\left[\gamma f_{\rho} - \frac{f_{\delta}}{\gamma}\right]\vec{\nabla}\rho_{3} = \frac{4}{\rho_{B}}E_{sym}^{*}\vec{\nabla}\rho_{3}$$

$$\uparrow$$

$$2\left[f_{\rho} - f_{\delta}\frac{M^{*}}{E_{F}^{*}}\right] = \frac{4}{\rho_{B}}E_{sym}^{pot}$$

Dynamical boosting of the vector contribution

V.Greco et al., PLB562(2003)215

Meson Production at Relativistic Energies: π^{-}/π^{+} , K⁰/K⁺

*E*_{sym}(*ρ*): Sensitivity to the Covariant Structure

Self-energy rearrangement in the inelastic vertices with different isospin structure \rightarrow large effects around the thresholds

High p_t selections: source at higher density \rightarrow Symmetry Energy at 3-4 ρ_0

Vector self energy more repulsive for neutrons and more attractive for protons

1. C.M. energy available: "threshold effect"

$$\varepsilon_{n,p} = E_{n,p}^* + f_{\omega}\rho_B \mp f_{\rho}\rho_{B3} \longrightarrow \begin{cases} s_{nn}(NL) < s_{nn}(NL\rho) < s_{nn}(NL\rho\delta) \\ s_{pp}(NL) > s_{pp}(NL\rho) > s_{pp}(NL\rho\delta) \end{cases}$$

2. Fast neutron emission: "mean field effect"

$$\frac{n}{p} \downarrow \Rightarrow \frac{Y(\Delta^{0,-})}{Y(\Delta^{+,++})} \downarrow \Rightarrow \frac{\pi^{-}}{\pi^{+}} \downarrow \Rightarrow decrease: NL \to NL\rho \to NL\rho\delta$$

Some compensation in "open" systems, HIC, but "threshold effect" more effective, in particular at low energies

No evidence of Chemical Equilibrium!!

G.Ferini et al., PRL 97 (2006) 202301

 \rightarrow reduced asymmetry of the source

Au+Au central: π and K yield ratios vs. beam energy

G.Ferini et al., PRL 97 (2006) 202301

Testing deconfinement with RIB's?

EoS of Symmetric/Neutron Matter: Hadron (NLρ) vs MIT-Bag → **Crossings**

Isospin content of the Quark Clusters in the Mixed Phase

Signatures? Neutron migration to the quark clusters (instead of a fast emission)

Symmetry Energy in the Quark Phase?

NPA775(2006)102

Isospin Extension of the NJL Effective Lagrangian (two flavors)

Mass (Gap) - Equation

$$\begin{split} M_i &= m_i - 4G_1 \Phi_i - 4G_2 \Phi_j, i \neq j \in (u, d) \\ \Phi_u &= <\overline{u}u >, \Phi_d = <\overline{d}d > \end{split}$$

$$G_1 = (1 - \alpha)G_0$$
$$G_2 = \alpha G_0$$

M.Buballa, Phys.Rep. 407 (2005)

 $\begin{array}{l} \alpha: flavor\ mixing\ parameter \rightarrow \ \alpha = \frac{1}{2} \ , \ NJL, \ Mu=Md \\ \alpha \rightarrow 0 \ , \ small\ mixing, \ favored \rightarrow physical\ \eta\ mass \\ \alpha \rightarrow 1 \ , \ \ large\ mixing \end{array}$

$$M_{u} = m - 4G_{0}\Phi_{u} + 4\alpha G_{0}(\Phi_{u} - \Phi_{d})$$
$$M_{d} = m - 4G_{0}\Phi_{u} + 4(1 - \alpha)G_{0}(\Phi_{u} - \Phi_{d})$$

Neutron-rich matter at high baryon density: $|\Phi_d|$ decreases more rapidly due to the larger ρ_d

$$\rightarrow$$
 ($\Phi_{u} - \Phi_{d}$) < 0

$$\alpha \to 0 \Longrightarrow M_{u} > M_{d} \Longrightarrow M_{p}^{*} > M_{n}^{*}$$
$$\alpha \to 1 \Longrightarrow M_{u} < M_{d} \Longrightarrow M_{p}^{*} < M_{n}^{*}$$

 α in the range 0.15 to 0.25.....

Iso-NJL: u-d mass splitting vs flavor mixing

Symmetry Energy in the Chiral Phase: something is missing

....only kinetic contribution

The Elusive Symmetry Energy

.FAIR Beams?