Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outloo

Chiral Partners and their Electromagnetic Radiation

Ingredients for a systematic in-medium calculation

Stefan Leupold

Johann Wolfgang Goethe-Universität Frankfurt

Justus-Liebig-Universität Giessen

Erice School, Sicily, September 2008

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook

Table of Contents

- Chiral partners
- 2 Nature of chiral partners
- What happens at chiral restoration?
- On vector meson dominance
- 5 Towards self-consistent in-medium calculations

6 Summary and outlook

•0000	000000						
Isospin partners							

- observe same spectra in different channels
- in particular: peaks (hadrons) at same position
- e.g. spectra of j^0_{μ} (from e^+e^-) and j^-_{μ} (from τ^- decay)

$$j^0_\mu = rac{1}{2} (ar u \gamma_\mu u - ar d \gamma_\mu d) \qquad o \qquad j^-_\mu = ar u \gamma_\mu d$$

 \rightsquigarrow isospin partners ρ^0 and ρ^-

Chiral partners Nature of chiral partners Chiral restoration VMD In-medium calculations Summary and outlook How do we know that chiral symmetry is broken?

study now instead of isospin transformation

$$j^0_\mu = rac{1}{2} (ar u \gamma_\mu u - ar d \gamma_\mu d) \qquad o \qquad j^-_\mu = ar u \gamma_\mu d$$

chiral transformation (from now on $SU_F(3)$)

$$j^0_\mu \qquad o \qquad j^b_\mu = ar q \, \lambda^b \gamma_5 \gamma_\mu q$$

- consequence of chirally symmetric world would be: same spectral information in vector and axial-vector current-current correlators (degeneracy)
- observable? $\rightsquigarrow \tau$ decay

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook
00000					

Chiral symmetry breaking and τ decays

study decay $\tau \rightarrow \nu_{\tau} + hadrons$:

- couples to V-A (weak process)
- G parity: V/A couples to even/odd number of pions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• are V and A spectra identical?

Chiral symmetry breaking and τ decays

study decay $\tau \rightarrow \nu_{\tau}$ +hadrons:

- couples to V–A (weak process)
- G parity: V/A couples to even/odd number of pions
- are V and A spectra identical?
- → Phys. Rept. 421, 191 (2005) (ALEPH):

One of the clearest signs of chiral symmetry breaking

 $v_1: \tau \to \nu_\tau + m\pi$ (*m* even) $a_1: \tau \to \nu_\tau + n\pi$ (*n* odd)

How to find the chiral partners?

- suggestive: get partners by relating lowest peaks/bumps in corresponding spectra
- before: isospin partners ρ^0 and ρ^{\pm} (same mass)
- \hookrightarrow now: ρ multiplet related to a_1 multiplet
- not same mass due to spontaneous symmetry breaking!

→ conjecture: not even of same nature!

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook
	•00000				

Nature of chiral partners

- start with lowest states (of quark model): nucleon octet, pion nonet, Δ decuplet, ρ nonet
- → "LLH" = lowest-lying hadrons
- \hookrightarrow LLH are quark-antiquark or three-quark states, respectively
 - conjecture:

chiral partners of LLH are dynamically generated states, i.e. hadron "molecules"

- N*(1535) from coupled-channel dynamics of ηN, KΛ, ... Kaiser/Siegel/Weise, Phys. Lett. B362, 23, 1995
- σ meson from ππ ...
 Oller/Oset, Phys. Rev. D60, 074023, 1999
- $\Delta^*(1700)$ and $N^*(1520)$ from $\pi\Delta$ and flavor partners Lutz/Kolomeitsev, Phys. Lett. B585, 243, 2004
- a₁ (and b₁) multiplets from πρ, (πω) and flavor partners Lutz/Kolomeitsev, Nucl. Phys. A 730, 392, 2004

General framework for dynamical generation

 study scattering of LLH state on Goldstone bosons in channel of interest (quantum numbers of chiral partner)

$$\rightarrow \text{ Bethe-Salpeter equation } T = K + K T$$

- interaction kernel always of same type:
 - lowest order chiral interaction

- \rightsquigarrow strength fixed model independently $\sim F_{\pi}^{-2}$
- → Weinberg-Tomozawa (WT) point interaction

 N.B.: renormalization point for loop fixed Lutz/Kolomeitsev, Nucl. Phys. A 730, 392, 2004 Hyodo/Jido/Hosaka, arXiv:0803.2550 [nucl-th]

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook
	00000				

Spectra of chiral partners

- Low-energy parts of spectra:
 - *ρ*-meson in vector channel (left yellow)
 - *a*₁-meson in axial-vector channel (right green)

→ How to understand spectra – resonances?

Mature					
	000000				
Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook

Nature of the *a*₁ meson

- experimental finding from τ decays (Dalitz plots): isovector–axial-vector current couples to π-ρ
- π - ρ system subject to final-state interactions (rescattering)
- experimental finding: resonant structure at \approx 1250 MeV
- conjecture: emerges from final-state interaction of π-ρ Lutz/Kolomeitsev, Nucl. Phys. A 730, 392, 2004
 Roca/Oset/Singh, Phys. Rev. D 72, 014002, 2005
 - describe final-state interactions via Bethe-Salpeter eq., kernel from lowest order chiral interaction (Weinberg-Tomozawa - WT)
 parameter free

Chiral partners ocooo Chiral partners Chiral restoration VMD In-medium calculations Summary and outlook

Description of a_1 as final-state interaction effect

parameters for $\tau \rightarrow \nu_{\tau} + 3\pi$: renormalization points

• for loop for transition from W to hadrons

- ← renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering)

 → renormalization point fixed (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004); Hyodo/Jido/Hosaka, arXiv:0803.2550 [nucl-th])

Chiral partners	Nature of chiral partners	Chiral restoration	VMD 0000	In-medium calculations o	Summary and outlook

au decay

- reasonable description with one free parameter
- → indicates that a_1 is ρ - π "molecule" (Markus Wagner and S.L., PRD in press, arXiv:0801.0814 [hep-ph])

How does chiral restoration take place?

- typically spontaneous symmetry breaking lifted at some temperature/density (Ferro magnet: Curie temperature)
- → consequence at point of chiral restoration: same in-medium spectral information in vector and axial-vector channel
 - how does it look like? \rightarrow various (> 2) scenarios
- \hookrightarrow scenario 1 (degenerate states):
 - ρ meson is still (dominantly) single-particle state
 - \rightarrow requires chiral partner which is also a single-particle state
 - → very high mass in vacuum (since $\neq a_1$ meson) → ??
- \hookrightarrow scenario 2 (melting):
 - *ρ* meson dissolves already in hadronic matter (precursor of deconfinement)
 - $\rightarrow a_1$ meson should also dissolve
 - → testable in our approach

Chiral partners	Nature of chiral partners	Chiral restoration ○●	VMD 0000	In-medium calculations o	Summary and outlook

・ロット (雪) (日) (日)

Dissolution of the a_1 meson?

- very simple model:
 - $\Gamma_{
 ho} \rightarrow 200, \ 250 \, {\rm MeV}$
 - no changes to pion
 - no momentum dep.
 - \hookrightarrow can be improved

- broader ρ meson leads to broader a_1 meson
- → no proof that melting scenario is correct, but at least consistent picture
- → problem of missing chiral partner (at single-particle level) solved by deconfinement

- コット (雪) (雪) (日)

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlook
			•000		

Necessity for a systematic treatment

- for understanding of nature of resonances and for systematic in-medium calculations
- → need effective field theory for pion nonet, ρ nonet, nucleon octet, Δ decuplet
- systematic calculations, i.e. with power counting, instead of models
 - suggested for meson sector in Lutz/Leupold, NPA in press, arXiv:0801.3821 [nucl-th]:
 - treat pseudoscalar and vector mesons as soft
 - allows for systematic inclusion of decays of vector mesons
 - yields clear statements about validity of vector-meson dominance (VMD)
 - vector mesons represented by antisymmetric tensor fields

Chiral partners Nature of chiral partners Chiral restoration VMD In-medium calculations Summary and outlook

Extended VMD for elementary hadrons

example: decays of ω meson

- both processes $\omega \rightarrow \gamma \pi$ and $\omega \rightarrow 3\pi$ in leading order given by VMD
- use first process to fix coupling of second one
- → prediction: $\Gamma_{\omega \to 3\pi} = 7.3 \text{ MeV}$ $\Gamma^{exp}_{\omega \to 3\pi} = (7.57 \pm 0.13) \text{ MeV}$ Leupold/Lutz,

arXiv:0807.4686 [hep-ph]

Chiral partners Nature of chiral partners chiral restoration oc

No VMD for hadron molecules

example: radiative decays of axial-vector mesons Lutz/Leupold, arXiv:0801.3821 [nucl-th]

No VMD for hadron molecules

example: radiative decays of axial-vector mesons

- formation of axial-vector meson dominated by Weinberg-Tomozawa (point) interaction
- radiative decay: VMD contribution and coupling of photon to constituents
- calculable from electromagnetic moments of constituents

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 uncertainty: dipole and quadrupole moments of vector mesons (lattice input?)

Chiral partners	Nature of chiral partners	Chiral restoration	VMD	In-medium calculations	Summary and outlool
				•	

Towards self-consistent in-medium calculations

• ingredients:

- systematic vacuum input
- thermodynamically consistent resummation scheme ("Φ derivable")
- → to account self-consistently for "changes induced by changes"
 - current conservation in resummation scheme ensured by use of antisymmetric tensor fields (Leupold, Phys. Lett. B646, 155, 2007)
- \hookrightarrow no proliferation of non-conserving part of current:

$$j^{\mu}\partial^{\nu}V_{\nu\mu} = j^{\mu}\left(\underbrace{g_{\mu\alpha} - \frac{\partial_{\mu}\partial_{\alpha}}{\partial^{2}}}_{P^{T}_{\mu\alpha}} + \underbrace{\frac{\partial_{\mu}\partial_{\alpha}}{\partial^{2}}}_{P^{L}_{\mu\alpha}}\right)\partial_{\nu}V^{\nu\alpha} = j^{\mu}P^{T}_{\mu\alpha}\partial_{\nu}V^{\nu\alpha}$$

→ check e.g. melting scenario at chiral restoration

Summary and outlook

- for the lowest-lying hadrons
 - (LLH = pion nonet, ρ nonet, nucleon octet, Δ decuplet) the chiral partners can be understood as being dynamically generated ("hadron molecules")
- suggestion for systematic counting, i.e. effective field theory for LLH
- $\hookrightarrow\,$ prediction where VMD works and where not
 - opens the way for systematic and self-consistent in-medium calculations

Many thanks to my collaborators Markus Wagner and Matthias Lutz

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Backup: How to find the chiral partners?

general strategy:

- start with hadron
- Ind quark current with same quantum numbers
- apply chiral transformation
- determine quantum numbers of resulting current

Iook for state in PDG

Backup: How to find the chiral partners?

general strategy:

- start with hadron
- find quark current with same quantum numbers
- apply chiral transformation
- determine quantum numbers of resulting current

Iook for state in PDG

but:

- step 2 not unique for mesons and baryons
- step 4 ill-defined for baryons

- problem: corresponding quark current not unique
- e.g. $\bar{q}\lambda_b\gamma^{\mu}q$ and $\partial_{\nu}(\bar{q}\lambda_b\sigma^{\mu\nu}q)$ have quantum numbers of ρ multiplet

- chiral transformation on $\bar{q}\lambda_b\gamma^\mu q$ leads to $\bar{q}\lambda_c\gamma_5\gamma^\mu q$
- \hookrightarrow quantum numbers of a_1 multiplet
 - chiral transformation on $\partial_{\nu}(\bar{q}\lambda_b\sigma^{\mu\nu}q)$ leads to $\partial_{\nu}(\bar{q}\lambda_b\gamma_5\sigma^{\mu\nu}q)$
- \hookrightarrow quantum numbers of b_1 multiplet cf. Caldi/Pagels, Phys.Rev.D14, 809, 1976
 - N.B. even more complicated for baryons

- problem: corresponding quark current not unique
- e.g. $\bar{q}\lambda_b\gamma^{\mu}q$ and $\partial_{\nu}(\bar{q}\lambda_b\sigma^{\mu\nu}q)$ have quantum numbers of ρ multiplet

- chiral transformation on $ar q\lambda_b\gamma^\mu q$ leads to $ar q\lambda_c\gamma_5\gamma^\mu q$
- \hookrightarrow quantum numbers of a_1 multiplet
 - chiral transformation on $\partial_{\nu}(\bar{q}\lambda_b\sigma^{\mu\nu}q)$ leads to $\partial_{\nu}(\bar{q}\lambda_b\gamma_5\sigma^{\mu\nu}q)$
- \hookrightarrow quantum numbers of b_1 multiplet cf. Caldi/Pagels, Phys.Rev.D14, 809, 1976
 - N.B. even more complicated for baryons

in our framework: a1 and b1 dynamically generated

Chiral partners Nature of chiral partners Chiral restoration VMD In-medium calculations Summary and outlook

Example: chiral partner(s) of ρ meson

dynamical generation of b_1 (parameter free)

Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

・ロト・西ト・ヨト・ヨト・日・ つんぐ

Chiral partners Nature of chiral partners Chiral restoration VMD In-medium calculations Summary and outlook

Pion form factor with final-state interaction only

parameters: renormalization points

• for loop for transition from photon to hadrons

- \hookrightarrow renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering, final-state interaction)

 ← renormalization point fixed
 (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004);
 Hyodo/Jido/Hosaka, arXiv:0803.2550 [nucl-th])

Pion form factor with final-state interaction only

- resonance only for renormalization points in TeV range (same finding: Oller/Oset, Phys. Rev. D 60, 074023 (1999))
- no resonance for reasonable renormalization points