Alpha decay chains from superheavy nuclei

Chhanda Samanta

Physics Department, University of Richmond, Richmond, VA, USA & Saha Institute of Nuclear Physics, Kolkata, India & Physics Department, Virginia Commonwealth University, Richmond, VA, USA

Collaborators:

P. Roy Chowdhury, S.I.N.P., Kolkata, India D. N. Basu, VECC, Kolkata, India

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

Extra-stable Nuclei: Magic N, Z (Closed Shell structure)

Theoretical Predictions:

N = 2, 8, 20, 28, 50, 82, 126, ? Z = 2, 8, 20, 28, 50, 82, ?

1965: Myers & Swiatecki : Z=114, N= 184 – possibly doubly magic (closed shell)
Report UCRL, 11980 (1965)1966: Confirmed: Sobiczewski, Gareev, Kikulin,Phys. Lett. 22, 500 (1966)

1969: Nilson et al. longest fission half life centers symmetrically around Z=114, N=184 S. G. Nilsson et al, N.P.A 131,1 (1969)
1969: Mosel & Greiner: studied: Z=114, Z=164 & alpha-decay estimated. U. Mosel, W. Greiner, Z. Phys. 222, 261 (1969),

Beyond actinides (Z=89 -103), there exists a region called,

"Magic Island", or, "Island of stability" (250 <A <320) where one can find

super heavy elements with large life times.

September 17, 2008

MAGIC Neutron and Proton numbers

N = 2, 8, 20, 28, 50, 82, 126,(162),184

Superheavy	Doubly magic nucleus:
²⁹⁸ 114:	
Z=114, N=184	Spherical

Z = 2, 8, 20, 28, 50, 82, (108),114

Superheavy Doubly magic nucleus:			
²⁷⁰ Hs:			
Z=108 N=162	Deformed.		

Modern theories predict bound	Questions:	
magic SHE with:		
Z=120, 124 and 126	 Will they live long? Are they found in nature? Can we make them in the laboratory? 	
N=184		
Will survive fission Spherical	>How do we detect them?	

Can SHE be found in Nature?

None found!!!

- Search for Superheavy Elements in Nature
- E. Cheifetz et al., Nuclear Chemistry Div., LBL, Berkeley, California, USA,
- Phys. Rev. C. 6 (October 1972)
- A search for superheavy-element fission-tracks in iron meteorites
- R. K. Bull, Department of Physics, University of Birmingham, Birmingham, UK Nature 282, 393 394 (22 November 1979)
- Search for spontaneous fission emitters in Atlantis II (Part II)
- T. Lund, R. Brandt, D. Molzahn, G. Tress, P. Vater and A. Marinov,
- Kernchemie, FB 14, Philipps-Universität, Marburg, Federal Republic of Germany,
- GSI, Darmstadt and Hebrew University, Jerusalem, Israel
- Journal Zeitschrift für Physik A Hadrons and Nuclei, 300, 285 (1981)
- Search for spontaneous fission tracks of superheavy nuclei in deep-sea nodule minerals
- K. Murtazaev, K. ; V.P. Perelygin,
- Sov. At. Energy (Engl. Translation) Vol/Issue: 63:6; 407- 409(December 1987)

Finally Found in Nature ?????

Evidence for a long-lived superheavy nucleus with atomic mass number A = 292 and atomic number Z = 122 in natural Th

arXiv:0804.3869v1 [nucl-ex]

A. Marinov¹, I. Rodushkin², D. Kolb³, A. Pape⁴, Y. Kashiv¹, R. Brandt⁵, R.V. Gentry⁶ & H.W. Miller⁷
¹Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
²Analytica AB, Aurorum 10, S-977 75 Luleå, Sweden
³Department of Physics, University GH Kassel, 34109 Kassel, Germany
⁴IPHC-UMR7178, IN2P3-CNRS/ULP, BP 28, F-67037 Strasbourg cedex 2, France
⁵Kernchemie, Philipps University, 35041 Marburg, Germany
⁶Earth Science Associates, P.O. Box 12067, Knoxville, TN 37912-0067, USA
⁷P.O. Box 1092, Boulder, CO 80306-1092, USA

Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance $(1-10)x10^{-12}$ relative to ²³²Th has been **found in a study of natural Th** using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of $t_{1/2} \ge 10^8$ y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdformed isomeric states is discussed.

Not confirmed, as yet!

Alpha-particle Emission from superheavy

The spontaneous emission of alpha- particle from a nucleus is possible if the released energy Q > 0.

Q=
$$[M(^{A}X_{Z}) - M(^{A-4}Y_{Z-2}) - M(^{4}\alpha_{2})]c^{2}$$
 (MeV)

To detect a SHE through alpha-particle channel:

\checkmark SHE should have large alpha-decay half-life (T α)

 \checkmark (T α) should be less than spontaneous fission half-life T(SF) and beta decay half life T(β).

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

Theoretical Prediction of α -decay Half-lives

Methodology used by us:

- (i) WKB framework for quantum tunneling of alpha-particle from nuclear potential.
- (ii) Density-dependent Effective NN interaction of microscopic nature is used to calculate nuclear potential by double folding method.
- (iii) Coulomb and centrifugal potential are also added to calculate total interaction energy (E(R)) of alpha-particle inside the parent nucleus.
- (iii) Mass formula of **Myers & Swiatecki**, **Muntian–Hofmann–Patyk–Sobiczewski** and **KUTY** have been used to calculate the alpha-decay half lives.

This formalism yields excellent agreement with the experimental data, especially when **experimental Q-values** are used. Different mass formula gives somewhat different results of which the mass formula of **Muntian–Hofmann–Patyk–Sobiczewski** yields the best result.

Finally, existing Fission and Beta-decay half-lives are taken in to consideration to predict the long-lived superheavy nuclei which will decay through alpha channel.

P. Roy Chowdhury, C. Samanta, D.N. Basu, Phys. Rev. C77, 044603 (2008)

Calculation

- Total interaction energy: $E(R) = V_N(R) + V_C(R) + \hbar^2 l(l+1) / (2\mu R^2)$
- The WKB action integral from turning points (TP) R_2 to R_3 :

 $K = (2/\hbar) \int [2\mu (E(R) - E_v - Q)]^{1/2} dR$ (1)

- At the three Turning points (TP) : $E(R_1) = E(R_2) = E_v + Q = E(R_3)$. The alpha particle oscillates between 1st and 2nd TP and tunnels through the barrier at 2nd and 3rd TP. μ = reduced mass.
- The zero point vibration energy $\mathbf{E}_{\mathbf{v}} \propto \mathbf{Q}$.

 E_v =0.1045Q for even Z-even N, 0.0962Q for odd Z-even N, 0.0907Q for even Z-odd N, 0.0767Q for odd -odd parent nuclei (includes pairing and shell effects).

D.N.Poenaru, W. Greiner, Ivascu, Mazilu, Plonski, Z. Phys. A325 (1986) 435

• The decay half life of the parent nucleus:

```
T = [h \ln 2 / 2E_v].[1 + exp(K)]  (2)
```

[•] The half lives are very sensitive to Q, as it goes to the exponential function in eqn. 2 through the action integral (eqn.1).

Double folded nuclear potentials between daughter & emitted nucleus

$$\bigstar \quad \mathbf{V}_{\mathbf{N}}(\mathbf{R}) = \int \rho_{\alpha} (\mathbf{r}_{1}) \rho_{\mathbf{d}} (\mathbf{r}_{2}) \mathbf{v} (\mathbf{s}) \mathbf{d}^{3} \mathbf{r}_{1} \mathbf{d}^{3} \mathbf{r}_{2}$$

The density distribution function of α-particle is of Gaussian form:

*
$$\rho_{\alpha}(\mathbf{r}) = 0.4229 \exp(-0.7024r^2)$$

where $\int \rho_{\alpha}(\mathbf{r}) d^3\mathbf{r} = \int \rho_{\alpha}(\mathbf{r}) 4\pi^2 r d\mathbf{r} = A_{\alpha} = \text{mass no. of α-particle.}$

The matter density distribution for the daughter nucleus can be described by spherically symmetric Fermi function.

$$\stackrel{\bullet}{\bullet} \rho_d(\mathbf{r}) = \rho_0(\mathbf{r}) / [1 + \exp\{(\mathbf{r} \cdot \mathbf{c})/a\}]$$
with half density radius
$$c = r_\rho (1 - \pi^2 a^2 / 3r_\rho^2),$$

equivalent sharp radius. $r_{\rho} = 1.13 A_d^{1/3}$, diffuseness a = 0.54 fm.

September 17, 2008

The DDM3Y effective interaction

The general expression for the density dependent effective M3Y interaction potential v(s) is written as

$$\mathbf{v} (\mathbf{s}, \boldsymbol{\rho}, \boldsymbol{\varepsilon}) = \mathbf{t}^{\mathsf{M}\mathbf{3}\mathbf{Y}} (\mathbf{s}, \boldsymbol{\varepsilon}) \mathbf{g}(\boldsymbol{\rho}, \boldsymbol{\varepsilon})$$
(1)

where M3Y effective interaction potential supplemented by a zero range pseudo potential t^{M3Y} (in MeV) is given by

where the zero-range pseudo-potential J₀₀(ε) representing single-nucleon exchange term is given by
 J₀₀(ε) = -276 (1 - α ε) (MeV.fm³) (3)

> and the density dependent part is given by

$$g(\rho, \varepsilon) = C (1 - \beta(\varepsilon) \rho_d^{2/3}) (1 - \beta(\varepsilon) \rho_\alpha^{2/3})$$
(4)

Coulomb Potential

 Assuming spherical charge distribution for residual daughter nucleus and emitted nucleus as a point particle, the Coulomb potential V_c(R) between them is:

 $V_c(R) = Z_{\alpha}Z_d e^2/(2R_c)$. [3 - $(R/R_c)^2$] for $R \le R_c$.

 $= Z_{\alpha} Z_{d} e^{2}/R$ otherwise

> The touching radial separation R_c between two nuclei is

 $\mathbf{R}_{\mathbf{c}} = \mathbf{c}_{\mathbf{e}} + \mathbf{c}_{\mathbf{d}}$

and c_e, c_d are half density radii.

Quantum theory of α-decay was established in 1928 by Gamow according to tunneling through a potential barrier.

Q-values, Spontaneous Fission and Beta Decay

Theoretical Q-values are taken from three different mass formulae:

1. Q-MMM: Muntian-Hofmann-Patyk-Sobiczewski (MMM), Acta. Phys. Pol. B34, 2073 (2003)

2. Q-MS: Myers-Swiatecki (MS)

Nucl. Phys. A601, 141 (1996)

3. Q-KUTY: Koura-Uno-Tachibana-Yamada (KUTY) Nucl. Phys. A 674, 44 (2000)

SF half-lives T(SF), calculated in a dynamical approach using macroscopic

microscopic method (MMM) by Smolanczuk et al. are shown in plots. Smolanczuk et al, Phys. Rev C52, 1871 (1995), PRC56, 812 (1997)

*****Beta-decay half lives (T_{β}) are taken from:

P. Moller, J. R. Nix, K.-L. Kratz, Atomic Data & Nuclear Data Tables, 66,131 (1997)

September 17, 2008

Important Experimental Discoveries

In the early 1990s **Peter Armbruster, Sigurd Hofmann, Gottfried Münzenberg** and co-workers at the GSI laboratory in **Darmstadt, Germany,** used cold-fusion reactions to synthesize elements **107-112**.

These data were later confirmed by **Kosuke Morita and co-workers** at the **RIKEN**, **Japan** who also synthesized elements **110 and 111**, **112**, **113** in cold-fusion reactions.

Isotopes of the SHE **112**, **113**, **114**, **115**, **116** and the element ²⁹⁴**118** have been produced in fusion evaporation reactions at Flerov Laboratory of Nuclear Reactions (FLNR)-Joint Institute for Nuclear Research (JINR), **Dubna, Russia by Yu.Ts. Oganessian and co-workers**.

SHE Z=106, 107, 108, 112 and recently, 114 have been chemically characterized.

Need more such experiments to confirm the properties of heavier elements.

FLNR-JINR Data: Our calculations

P. Roy Chowdhury, C. Samanta and D.N. Basu, Phys. Rev. C 73, 014612(2006)

ms					
ms					
5) s					
5)					

** Yu. Ts. Oganessian et al., PRC 74 (2006) 044602

[ref] Expt: *Yu. Ts. Oganessian et al., PRC 70 (2004) 064609

112 ununbium (Uub), 114 ununquadium (Uuq), 116 ununhexium (Uuh), 118 ununoctium (Uuo)

Paro Nuc	ent :lei	EXPT* Q (MeV)	Theory [M-S] Q (MeV)	Experiment [ref]	This work
Z	Α			1 /2	1 /2
112	283	9.67 ± 0.06	9.22	(-0.7) 4.00 (+1.3) s	(-2.0) 5.9 (+2.9) s
110	279	9.84 ± 0.06	9.89	(-0.03) 0.18 (+0.05) s	(-0.13) 0.40 (+0.18) s
108	275	9.44 ± 0.07	9.58	(-0.06) 0.15 (+0.27) s	(-0.40) 1.09 (+0.73) s
106	271	8.65 ± 0.08	8.59	(-1.0) 2.40 (+4.3) min	(-0.5) 1.0 (+0.8) min
104	267	S.F.			

104 Rutherfordium (Rf), 106 Seaborgium (Sg), 108 Hassium (Hs), 110 Darmstadtium (Ds)

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

GSI data: Our calculations

P. Roy Chowdhury, C. Samanta, D.N. Basu, Atomic Data & Nuclear Data Tables (in press)

September 17, 2008

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

RIKEN data : our calculations with Q-experiment

*EXPT: K. Morita et al., Jour. Phys. Soc. of Japan 73 (10): 2593 (2004)

113 Ununtrium (Uut), 111 Roentgenuim (Rg), 109, Meitnerium (Mt), 107 Bohrium (Bh), 105 Dubnium (Db)

Parent Nuclei ^A Z	Expt.* E _a (MeV)	Expt Q (MeV)	Expt. Decay Time(t) T1/2=0.693*t	This work T _{1/2}
278113	11.68 ± 0.04	11.90 ± 0.04	344 μs (238 μs)	(-18) 101 (+27) μs
274111	11.15 ± 0.07	11.36 ± 0.07	9.26 ms (6.41 ms)	(-0.12) 0.39 (+0.18) ms
270109	10.03 ± 0.07	10.23 ± 0.07	7.16 ms** (4.96ms)	(-17.68) 52.05 (+27.02) ms
266107	09.08 ± 0.04	09.26 ± 0.04	2.47 s (1.71 s)	(-1.38) 5.73 (+1.82) s
262105		S.F.		

** Problem: As Q value decreases, the half life should increase. Deviations to this predominant behavior are observed in the above experimental data (111 and 109).

P. R.Chowdhury, D.N.Basu, C. Samanta, Phys. Rev. C 75, 047306 (2007)

This discrepancy doesnot exist in repeat experiment: K. Morita et al., J. Phys. Soc. Jpn. 76, 045001 (2007)September 17, 2008International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008Chhanda Samanta

Doubly Magic Deformed Superheavy (Z=108, N=162): First Evidence

Doubly Magic Nucleus ²⁷⁰Hs₁₆₂

J. Dvorak,1 W. Brüchle,2 M. Chelnokov,3 R. Dressler,4 Ch. E. Düllmann,5,6 K. Eberhardt,7 V. Gorshkov,3 E. Jäger,2 R. Krücken,1 A. Kuznetsov,3 Y. Nagame,8 F. Nebel,1 Z. Novackova,1 Z. Qin,2,9 M. Schädel,2 B. Schausten,2 E. Schimpf,2 A. Semchenkov,1,2 P. Thörle,7 A. Türler,1 M. Wegrzecki,10 B. Wierczinski,1 A. Yakushev,1 and A. Yeremin3

1Technische Universität München, D-85748 Garching, Germany 2Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany 3Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation 4Paul Scherrer Institut, CH-5232 Villigen, Switzerland 5Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 6University of California, Berkeley, California 94720-1460, USA 7Universität Mainz, D-55128 Mainz, Germany 8Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan 9Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China 10Institute of Electron Technology, PL-02-668 Warsaw, Poland

Theoretical calculations predict ²⁷⁰Hs (*Z*=108, *N*=162) to be a doubly magic deformed nucleus, decaying mainly by α -particle emission. In this work, based on a rapid chemical isolation of Hs isotopes produced in the ²⁶Mg+²⁴⁸Cm reaction, we observed 15 genetically linked nuclear decay chains. Four chains were attributed to the new nuclide ²⁷⁰Hs, which decays by α -particle emission with Q_{α} =9.02±0.03 MeV to ²⁶⁶Sg which undergoes spontaneous fission with a half-life of 444(+144/-148) ms. A production cross section of about 3 pb was measured for ²⁷⁰Hs. Thus, ²⁷⁰Hs is the first nucleus for which experimental nuclear decay properties have become available for comparison with theoretical predictions of the *N*=162 shell stability.

Z = 108, 106: Our Calculations

C. Samanta, P. Roy Chowdhury, D.N. Basu, Nucl. Phys. A 789, 142 (2007)

What about the large stability of N=184? May not survive fission before it can alpha-decay!

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

Will all isotopes survive fission? .. No!

Fiset & Nix., NPA 193(1972) 647: Z=110, N=184 $t_{1/2} \sim 10^{9.4}$ years (age of the earth ~ 10⁹ years) ; We find T_{α} ~ 10⁹ s.

Higher Z (Heavier Elements):

Large fission half-life, but α -decay half-life decreases

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008

Alpha-decay half-life decreases with increasing ${\bf Z}$

Can the element Z=122, A=292 be found in Nature in its ground state?...... No! Our prediction:

For A = 292, Z \geq 122, T_{α} ~ micro-seconds [mass from KUTY]

"Nuclear Half-lives for a-radioactivity of elements with $100 \le Z \le 130$ ", P.Roy Chowdhury, C. Samanta, D.N. Basu, At. Data & Nucl. Data Tables (2008).

September 17, 2008

²⁷⁷112 and its alpha-decay chain: GSI & RIKEN data

C. Samanta, D.N.Basu, P.R.Chowdhury, Jour. Phys. Soc. Japan, 76, 124201 (2007)

✤ Observed first four alpha-decay chains of GSI and RIKEN are similar (except the chain 3 of GSI which extends up to ²⁵⁷No).

S. Hofmann et al, EPJA 14, 147 (2002), K. Morita et al, JPSJ 76, 043201 (2007)

• Quantum tunneling model reasonably reproduces the experimental data of α_2 and α_3 decay channels of GSI and RIKEN with 1=0.

• For the α_1 decay, 1 ~ 7 can explain the data.

♦ But, for the α_4 , α_5 and α_6 decays, the calculated alpha-decay half lives are higher than the experimental ones which can not be explained.

Problem!

Theoretical Q values considered here are for: $(Parent)_{G,S} \longrightarrow (daughter)_{G,S}$ decays.

But, there is no guarantee that the experimentally observed alpha decay chains proceed from the $(Parent)_{G,S} \longrightarrow (daughter)_{G,S}$. In fact, transitions to and from excited states are also possible.

D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rev. C76, 044301 (2007)

Where is the Magic Island ?

P. Roy Chowdhury, C. Samanta, D.N. Basu, Phys. Rev. C77, 044603 (2008)

✓ Considerably large half- lives for detection of these **SHE**.

Alpha-decay half lives of

➤Z=116, N=184 (~10⁻² seconds)

➤Z=114, N=184 (~10² seconds)

➤Z=110, N=183 (~10¹⁰ seconds)

Z=108, N=184 (~10¹² seconds) But, fission half-life is slightly lower.

 \bullet Nucleus with Z = 110, N = 183 will be near the center of a magic island.

Alpha-decay half lives of

Z=108, N=162 (~30 seconds)

➤Z=106, N=162 (~10⁴ seconds)

Z=104, N=162 (~10⁶ seconds) But, will not survive fission!

Nucleus with Z = 106, N = 162 will be near the center of a small magic island/peninsula

With half life greater than the (deformed) **doubly magic** Z = 108, N = 162

Life times of the above SHE would be far less than the age of the earth.

September 17, 2008

Thank You!

September 17, 2008

International School of Nuclear Physics (30th Course), Erice, Sicily, 16 - 24 September, 2008