Exploring the Phase Diagram of Strongly interacting Matter

News from SPS and RHIC

Tim Schuster H-QM

FIAS Frankfurt Institute for Advanced Studies

Helmholtz Research School

Quark Matter Studies

30th International School of Nuclear Physics, Erice, 16 - 24 September 2008

CERN press release 2000:

PRESS RELEASE (23)

"....evidence of a new state of matter where quarks and gluons are not confined..." (L. Maiani)

New State of Matter created at CERN

At a special seminar on 10 February, spokespersons from the experiments on CERN's Heavy Ion programme presented competing evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

Critical point and crossover: Fodor et. al.: JHEP 0404 (2004) 050

Study properties of the Onset of Deconfinement and search for the Critical Point at energies $5 < \sqrt{s_{NN}} < 20$ GeV

- Indications for a phase transition
 - Onset of deconfinement at SPS energies
 - Signatures of deconfined matter at RHIC energies
- Experimental programs to probe the phase diagram
 - NA61/SHINE, fixed-target experiment at CERN-SPS
 - STAR, collider detector at RHIC-BNL
- Physics program and capabilities to
 - Study the onset of deconfinement
 - Search for the QCD critical point

Introduction Onset of Deconfinement

• Maximum seen in strangeness to pion ratio at low SPS energies:

- Difficult to model in hadronic scenarios
 (e.g. HGM: Cleymans et al., PRC 60 (1999) 054908)
- Predicted as signal for the onset of deconfinement (...... SMES, APP B30 (1999) 2705)

Introduction Properties of deconfined matter

- Observations in RHIC data indicating the formation of a hot partonic medium:
 - Jet energy loss
 - Strong collective flow
 - Quark number scaling

• Can we turn off these signatures when going down in energy?

Experiment NA61/SHINE at CERN-SPS

Experiment STAR at BNL-RHIC

Tim Schuster Erice Nuclear Physics School

September 2008

Experiment Comparison NA61 - STAR

- Large acceptance hadron spectrometers
 - TPC: Q, **x**, **p**, d*E*/dx
 - Particle identification in the TPCs:
 - pions, kaons, protons via dE/dx
 - K^0 _S, Λ , Ξ , Ω : decay topology + inv. mass. + dE/dx
 - φ , K*, Λ *: inv. mass. + d*E*/d*x*
 - plus further detectors: TOF, EMC, ...

Experiment Collider vs. Fixed-target

Advantages of a collider detector in an energy scan:

• Acceptance stays constant with energy, full azimuth

Spatial track density rises slower

Experiment Collider vs. Fixed-target

Advantages of a fixed-target experiment in an energy scan:

Large acceptance for all spectator nucleons and fragments: Precise centrality determination

- Beam/target nucleus species can be changed quickly
 - NA61/SHINE will run in parallel with LHC-ion
 - Fragmentation beam from the primary Pb beam

How do "horn" position and amplitude vary with system size?

→ NA61/SHINE will extend the NA49 energy and system size scan

- Elliptic flow v₂
 - Probes the early stage of the collision
 - Test for initial pressure and degrees of freedom
 - Measured over a wide range of energy for pions

 To test the scaling, identified hadron v₂ must be measured up to large p_T

- Proton v₂ collapse predicted as signal for deconfinement (H. Stöcker: NPA 750 (2005) 121)
 - NA49: Difference between methods:
 Depends on v₂ fluctuations and nonflow contributions
 - Azimuthally symmetric detector STAR can measure event-by-event flow vector
 - STAR event plane resolution makes measurement with smaller error possible
 - Event plane detector as upgrade under discussion

Centrality Bin

Physics Plans Critical Point

- Lattice calculations show change in quark number susceptibilities
 - For light and strange quarks
 - Smooth transition at $\mu_B = 0$
 - Divergence at the critical point

- Look for structures in the excitation function of fluctuations!
 - net-proton Kurtosis as a function of beam energy
 - two proton correlation functions
 - deuteron over proton

Physics Plans Critical Point

- Dynamical fluctuations of the K/π ratio rise steeply towards low SPS energies
 - Cannot be reproduced in hadronic model (UrQMD)
 - However, no quantitive prediction for critical point

- STAR TOF will improve unambiguous kaon identification at low energies
 - Systematic measurement over wide energy range possible with smaller error

Physics Plans Critical Point

- Other fluctuation measures (N, <p_T>) show no significant energy dependence for central Pb+Pb collisions at SPS energies
 - Are critical point signatures washed out in the hadronic phase?
 - Small systems freeze out at higher temperatures: A 2-D scan (T,µ_B) is possible by varying (A,√s)

Status and Schedule NA61/SHINE

2006	p+Pb	Test run
2007	p+C	Neutrino physics detector R&D
	1 month p beam successfully completed, positive evaluation of results	
2008	p+C, p+p	high p_T , cosmic ray & neutrino physics
	Currently successfully re	unning!

proposed future runs:

2000	p+Pb at 158A GeV	high p⊤
2009	p+p at 6 energies	CON X
2010	p+Pb at 6 energies	silement
2011	S+S at 6 energies	Ster of Other
2012	C+C at 6 energies	AND ON CHING
2013	In+In at 6 energies	the do the

Status and Schedule STAR

• 2008: Successful test run at $\sqrt{s_{NN}} = 9.2$ GeV:

- 2010: 8-10 weeks exploratory run proposed
- 2012: Focussed run in region of interest exposed in exploratory run

Summary

- Explore the phase diagram of strongly interacting matter in A+A collisions at 5 < √s_{NN} < 20 GeV:
 - Study the properties of the onset of deconfinement
 - Search for the critical point

- Worldwide efforts to scan the phase diagram:
 - RHIC energy scan: Au+Au at 5 < √s_{NN} < 200 GeV
 Systematic study with energy independent acceptance over a wide energy range
 - NA61 at SPS: Various A+A species at 5 < √s_{NN} < 17 GeV
 Adds a complementary system size scan and larger rapidity coverage
 - CBM at FAIR, MPD at NICA: √s_{NN} < 9 GeV
 High rate: Measurement of rare probes at lower energies