GSI

Cosmic matter in the Lab: FAiR = The International Facility for Antiproton and Ion Research

Horst Stöcker, GSI & FIAS

Greece

Austria China

+

Observers

Finnland France

Germany

India

Italy

Poland Slovenia

enia Spain

-AIR

n Sweden

Romania

UK

Russia

The Big Challenge ...

Gain Factors

- Beam intensities by factors of 100 10000
- Beam energies by a factor 20
- Production of antimatter beams
- Factor 10000 in beam brilliance via cooling

A star

• Efficient parallel operation of programs

Construction Period, Cost, Users

- Construction in three phases until 2016
- Total cost 1.2 B€
- Scientific users: 2500 3000 per year

Financing

- 65 % Federal Government of Germany
- 10 % State of Hessen
- 25 % Partner Countries
- → FAIR GmbH with International Shareholders

FAIR Research Topics and Inter-links

Plasma physics with intense ion bunches and petawatt Laser pulses

Matter at high energy densities

Comparison of FRS with Super-FRS, intensity gain

Important beam parameters:

- All elements from H to U
- Intensity ~ $3x10^{11}$ ions/sec.

NUSTAR@FAIR

Mass spectrometry: New Experimental Storage Ring ILIMA

Experiments with slowed-down, stopped and post-accelerated (single) ions at the **low-energy branch**

Pygmy-dipole resonance, neutron skins and equation of state of matter

HypHI Project at GSI/FAIR

Addition of every nucleon \rightarrow penalty factor $R_p=48$ but data are at very low p_t p_t int. with A-dependent slope $\rightarrow R_p=26$

Grand Canonical Ensemble: $R_p \approx \exp[(m_n \pm \mu_b)/T]$ for T=125 MeV and $\mu_b = 540$ MeV $\rightarrow R_p = 23$ good agreement!

also good for antideuterons data: $R_p=2\pm 1 \ 10^5 \text{ GC}$: $R_p=1.3 \ 10^5$

P.Braun-Munzinger, J.Stachel J.Phys. G28(2002)1971

A.Antronic et al.

Production yields of exotic hypernuclei

FAIR QCD-Physics Program with Antiprotons

Flair @ FAIR: Research Topics with

Low-Energy Antiprotons fundamental interactions

- CPT (antihydrogen, HFS, magnetic moment)
- gravitation of antimatter
- atomic collision studies
 - ionization
 - energy loss
 - matter-antimatter collisions
- anti- protonic atoms
 - formation
 - strong nuclear interaction and surface effects
 - trapping anti- protons in nuclei: short lived bound states?

Later perhaps: Low Epergy Anti- He

I.Mishustin; L. Satarov, HSt; W Greiner;

Cold Nuclear Compression by

Vector Attraction of

Compressed baryonic matter: exp.s start at SIS100

The Compressed Baryonic Matter Experiment

Compressed Baryonic Matter: CBM Physics Topics

Probing the high density EoS: collapse of coll. flow of protons? Q-H phase boundary@high ρ_{B} : multi-strange + charmed prod. QCD critical point: E-by-E fluctuations; Energydep Hadron Yield Chiral symmetry rest. at high ρ_{B} : open charm, dilepton prod.

Big Bang- & Neutron Star-matter: CBM @ FAIR QCD phases at High Density ρ_B

Tenfold Compression! Crossing that 1. Order Transition!

Ideal Hadron Gas differs strongly from

Chiral SU(3) hadron model with mu-crit@S/A=7-10!

30AGeV 3Dim 3-Fluid First Order: Baeuchle, Bleicher, H.St.

CBM: rich physics program near the critical point

low luminosity
=> abundant probes

- yields and particle ratios \rightarrow *T* and $\mu_{\rm B}$
- identified particle elliptic flow $v_{1,2}$ \rightarrow collapse of proton flow?
- K/ π , p/ π , \langle p_T \rangle fluctuations \rightarrow critical point signal
- scale dependence of fluctuations \rightarrow source of the signal
- v_2 fluctuations \rightarrow promising new frontier?

highest luminosity
=> rare probes

- rare particle production at threshold $\rightarrow EOS$
- flow of charm, melting of quarkonia $(J/\psi, \psi', D^0, D^{\pm}, \Lambda_c)$ \rightarrow deconfinement
- in medium modific. of vector mesons

 $(\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-), D)$ \rightarrow chiral symmetry restoration

Strange matter droplets

Analogy to the early universe: evolution of critical fluctuations

Production yields of possible exotic kaon clusters

Collapse of Shock at Phase Transition in EoS

Later dubbed "softest point" of EoS

Au+Au, 8GeV, b=3fm, Triple differential Cross section

Proton "Anti-Flow" observed in Pb+Pb@40AGeV: NA49

Preliminary

Anti-Flow'' discovered? => 1. Order Phase Transition!

Excitation Function: Elliptic flow

NA49 PRC C68 034903 (2003)

Wetzler, NA49 data: Collapse of proton flow at 40AGeV?

Other measures to look for

- Disappearance of partonic signatures from RHIC
 - Disappearance of quark scaling in particle identified high momentum elliptic flow ?
 - Disappearance of ideal hydro description in low momentum elliptic flow ?
 - Disappearance of nuclear suppression at high momentum ?
- To probe the system resonances
 - Hadronic lifetime measurements through resonance rescattering and regeneration
 - Chiral symmetry restoration through chiral resonance partners (e.g. ρ and a_1)

The future is bright

A three prong approach:

upgrade facility

Highest Intensity

higher energy

Facility for Antiproton & Ion Reseach

RHIC upgrade with new detector R2D Large Hadron Collider with ALICE, CMS, ATLAS Synthesis and study of the heaviest elements

