

Prospects for the SNO combined 3-phase neutrino oscillation analysis

Nuno Fiúza de Barros LIP Lisbon

Outline

- Introduction
 - The SNO detector
- Previous results
- 3-phase combined analysis
- Oscillation analysis

Sudbury Neutrino Observatory (SNO)

SNO program

Overview of previous results

Upcoming analyses

- No more data, so what's new?
- Refinement of the analysis
 - Event reconstruction
 - Better Monte Carlo Simulations
 - Background cuts and estimations

- Analysis of combined phase I+II at 3.5MeV threshold
 - Talk by Hallin
- Analysis of combined phases I+II+III

Combined 3-phase analysis

- Combine the data sets from 3 SNO phases
- Advantages
 - ~3 livetime years of data into a single data set (better statistics)
 - Analysis improvements lead to better systematics
 - Signals and error correlations are better handled by combining all data
 - Cross information from a specific phase with others
 - NCD phase enhanced NC measurement

Combined 3-phase analysis

- NCD phase Pulse Shape Analysis (PSA) will be introduced as igodola constrain to NC
 - Event-by-event analysis of pulse shapes
 - Digitisation of pulse shapes for particle identification

De-logged current

0

1

neutron with p-t track \perp wire

3-phase analysis

- Difficulties
 - "Traditional" effective energy unconstrained fit entangles neutrino physics with detector response
 - The energy response is considerably different between phases
 - In particular between phase III and others
- Solution:
 - Fit directly for the neutrino survival probability (Pee)

Pee fit

- \odot Standard SNO Signal Extraction with Energy, Isotropy, Radius and cos θ_{sun}
 - Free parameters
 - Total ⁸B flux
 - Day & Asymmetry Survival probability coefficients
 - Background rates
 - Detector systematics
- Will work directly on neutrino energy
 - Common to all phases
 - Break phase correlations
 - Search directly for spectral distortion

Oscillation analysis

- Better understand the survival probability of solar neutrinos
 - Scale of Pee
- ⁸B spectrum shape distortion
- Determine the mixing parameters generating the matterenhanced effect (MSW)
 Survival Probability

Oscillation analysis (II)

- New questions introduced
 - Is there a distortion from a flat Pee?
 - Can we do better on the mixing parameters with a Pee curve?
 - Is the effective 2v parameterisation enough? By fixing θ_{13} are we artificially constraining θ_{12} ?
 - Shall the residual discrepancy between experiments disappear by introducing θ₁₃?

Survival probability (Pee)

68% CL model spread of Pee

With a common curve for all phases should yield a better result

3v analysis (θ₁₃)

- New precision results could push θ₁₂ further away from KamLAND best fit
 - Hint of non-zero θ_{13}
 - KamLAND moves towards
 lower values of θ₁₂
 - SNO moves towards larger
 θ₁₂

- A 3v oscillation analysis will be performed on SNO-only data
 - A 3v global analysis will also be performed

- SNO already provides a good constrain on θ_{12}
 - With the combination of 3 phases we expect to improve it
- Perform a 3v analysis
 - Any limit on θ₁₃ will be propagated into a global analysis
- Search of a spectral distortion in Pee
 - Obtain an improved measurement of ⁸B flux

Summary

- SNO data taking is over but the analysis continues strong
- 3-phase combined analysis output will be ⁸B flux and energy-dependent survival probability
 - Moving from search physics to precision physics
- A 3v analysis will be carried out
 - Can we get a better result by using Pee as input?
 - How significant could be a limit on θ_{13} ?

Interesting results are coming soon...

