Effective Field Theory and Electroweak Processes in Nuclei

Kuniharu Kubodera

University of South Carolina

Erice, September 18, 2009

Introduction

Low-energy electroweak processes relevant to the present talk

•
$$pp$$
-fusion: $p+p \rightarrow d+e^++\bar{\nu_e}$

•
$$\nu$$
- d reactions: $\nu_e + d \rightarrow e^- + p + p$, $\nu + d \rightarrow \nu + n + p$

•
$$\mu$$
- d capture: $\mu^- + d \rightarrow \nu_e + n + n$

•
$${}^{3}\text{He}+p \rightarrow {}^{4}\text{He}+\nu_{e}+e$$
 (Hep), ${}^{3}\text{He}+n \rightarrow {}^{4}\text{He}+\gamma$ (Hen)

• radiatice pion capture: $\pi^- d \to \gamma nn$

Important for one or more of the following reasons:

- (1) Astrophysical processes (pp-fusion and Hep in solar burning, νd reactions in supernova explosion, etc.)
- (2) Role in detecting astrophysical neutrinos (νd reactions in the SNO experiments)
- (3) Provide information relevant to (1) and (2).

Let's concentrate on pp-fusion

ullet S factor: For the incident CM energy E

$$\sigma(E) = \frac{S(E)}{E} \exp\{-2\pi\eta(E)\}, \quad \eta(E) \equiv \frac{Z_1 Z_2 e^2}{\hbar v}$$

$$v = 2E/\mu, \ \mu = mA_1 A_2/(A_1 + A_2), \ (m; \ \text{atomic mass unit})$$

$$S_{pp}(0) = 6\pi^2 m_p \alpha \ln 2 \frac{1}{\gamma^3} (g_A/g_V)^2 \frac{f_{pp}^R}{(ft)_{0+}} |\mathcal{M}|^2$$

 \mathcal{M} = nuclear transition matrix element;

$$\gamma = (2\mu E_f)^{1/2} = 0.2316 \text{ fm}^{-1}$$

 f_{pp}^{R} = phase space factor with radiative corrections

The solar model and stellar evolution theory require 1% precision in S_{pp} .

- Current status [Adelberger et al., RMP70 (1998)]: \sim 6 % uncertainty in S_{pp}
- How to go beyond this level?
- Solar Fusion Workshop at INT (Jan 2009)
 - report to appear in RMV
- All the (seemingly unrelated) processes listed above are interrelated in this context.

The latest lattice QCD calculation of the nucleon weak form factors

Yamazaki et al. (RBC-UKQCD Collaborations), Phys. Rev. D, 79 (2009) 114505.

$$g_A/g_V = 1.19(6)_{\text{statistical}}(4)_{\text{systematic}}$$

 \leftrightarrow 7% smaller than the experimental value $g_A/g_V=1,2695(29)$ [PDG08]

• Probably there will be a while before the two-body process can be calculated with required precision by lattice QCD.

Standard nuclear physics approach (SNPA)

The phenomenological potential picture — highly successful. A-nucleon system described by a Hamiltonian

$$H^{\text{phen}} = \sum_{i=1}^{A} t_i + \sum_{i < j}^{A} V_{ij}^{\text{phen}} + \sum_{i < j < k}^{A} V_{ijk}^{\text{phen}},$$

Short-distance behavior in V_{ij}^{phen} — model-dependent

- \leftrightarrow Assume a functional form and adjust parameters to reproduce the two-nucleon data.
- High-precision phenomenological N-N potential ($\chi^2 \sim 1$): AV18, Nijm, CD-Bonn

Nuclear wave function $|\Psi^{phen}>$:

$$H^{\text{phen}}|\Psi^{\text{phen}}> = E|\Psi^{\text{phen}}>.$$

Finding useful truncation schemes for $|\Psi^{phen}>$

- An important branch of nuclear physics (shell model, RPA)
- \bullet Example: calculation of $\beta\beta$ -decay in heavy nuclei

For lightest nuclei — exact solutions available !!

Nuclear Responses to External Electroweak Probes

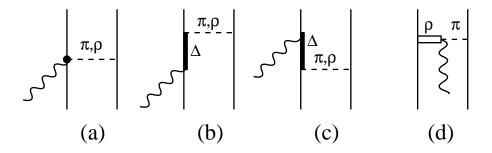
The transition operators \mathcal{T}

$$T = T^{(1)} + T^{(2)} + \dots = \sum_{i=1}^{A} \mathcal{O}_i + \sum_{i < j}^{A} \mathcal{O}_{ij} + \dots$$

 $\mathcal{T}^{(1)}$ – Dominant one-body term (impulse approximation (IA) term)

 $\mathcal{T}^{(2)}$ – Exchange-current (EXC) term involving two nucleons.

 $\mathcal{T}^{(2)}$ derived from one-boson exchange diagrams – consistent with the nuclear Hamiltonian and satisfy the low-energy theorems



- ⇒ Standard Nuclear Physics Approach (SNPA)
 - Cornerstone of nuclear physics;

pp-fusion rate in SNPA

The latest calculation in SNPA — Schiavilla et al. (1998).

Similarity of the Gamow-Teller (GT) matrix elements for pp-fusion and tritium β -decay

ullet The same applies to u-d, μ -d and Hep.

Fine-tune \mathcal{O}_{ij} to reproduce Γ_{β}^t .

For each of the two-body GT transition operators (with different r-dependences)

ullet Transition density for pp-fusion \propto that for tritium eta-decay

- A single multiplicative constant can match them all.
- \Rightarrow Adjust $N\Delta$ -axial coupling constant

Nuclear matrix element for $S_{pp}(0)$ calculable with ~ 0.3 % precision

 \leftrightarrow The range of variation for the five high-precision phenomenological potentials.

Effective field theory (EFT)

Low energy-momentum phenomena characterized by a scale Q — Cut-off scale $\Lambda_{\rm cut}\gg Q$

- Retain only low energy-momentum degrees of freedom (effective fields $\phi_{\rm eff}$).
- \Rightarrow Effective Lagrangian \mathcal{L}_{eff} , which consists of monomials of ϕ_{eff} and its derivatives consistent with the symmetries.

A term involving n derivatives $\sim (Q/\Lambda_{\rm cut})^n$

 \Rightarrow perturbative series in Q/Λ_{cut} .

The coefficient of each term — low-energy constant (LEC)

• LECs subsume high energy dynamics

If the LEC's up to a specified order n are known

 $\leftrightarrow \mathcal{L}_{eff}$ serves as a complete (and hence model-independent) Lagrangian.

The results obtained have accuracy of order $(Q/\Lambda_{\rm cut})^{n+1}$. In our case, $\mathcal{L}_{\rm QCD} \to \mathcal{L}_{\chi \rm PT}$ [Chiral Perturbation Theory $(\chi \rm PT)$] In $\mathcal{L}_{\chi \rm PT}$, nucleons and pions are the effective degrees of freedom — $\Lambda_{\rm cut} \sim 1$ GeV.

A system involving a nucleon \leftrightarrow heavy-baryon chiral perturbation theory (HB χ PT) [Jenkins and Manohar (1991)]

 $\mathsf{HB}\chi\mathsf{PT}$ cannot be applied in a straightforward manner to nuclei. \Leftrightarrow The existence of very low-lying excited states in nuclei

Nuclear χ PT à la Weinberg (1990)

- Classify Feynman diagrams into two groups.
 Irreducible diagram Every intermediate state has at least one meson in flight
 - Reducible diagrams Diagrams that are nor irreducible
- Apply the chiral counting rules only to irreducible diagrams.
- ullet Treat irreducible diagrams (up to a specified chiral order) as an effective potential (to be denoted by $V_{ij}^{\rm EFT}$) acting on nuclear wave functions.

Incorporate reducible diagrams by solving the Schrödinger equation

$$H^{\text{EFT}}|\Psi^{\text{EFT}}\rangle = E|\Psi^{\text{EFT}}\rangle,$$

$$H^{\text{EFT}} = \sum_{i}^{A} t_i + \sum_{i < j}^{A} V_{ij}^{\text{EFT}} + \sum_{i < j < k}^{A} V_{ijk}^{\text{EFT}}$$

Application of nuclear χ PT to a process involving external current(s)

$$\mathcal{T}^{\mathsf{EFT}} = \sum_{i}^{A} \mathcal{O}_{i}^{\mathsf{EFT}} + \sum_{i < j}^{A} \mathcal{O}_{ij}^{\mathsf{EFT}} + \cdots$$

 $\mathcal{T}^{\mathsf{EFT}}$ — all irreducible diagrams (up to a given order ν) involving the relevant external current(s).

Transition matrix in nuclear EFT

$$\mathcal{M}_{fi}^{\mathsf{EFT}} = <\Psi_f^{\mathsf{EFT}} \, | \mathcal{T}^{\mathsf{EFT}} \, | \Psi_i^{\mathsf{EFT}}> = <\Psi_f^{\mathsf{EFT}} | \sum_i^A \mathcal{O}_i^{\mathsf{EFT}} + \sum_{i < j}^A \mathcal{O}_{ij}^{\mathsf{EFT}} + \cdots | \Psi_i^{\mathsf{EFT}}>$$

Hybrid EFT (EFT*) — Park et al., PRC, 67 (2003) 055206

It is a non-trivial task to fully carry out this program:

- (i) Difficulties in getting Ψ^{EFT}
- (ii) Unknown LECs in EFT-based transition operators

Hybrid EFT called EFT*: $\Psi^{\text{EFT}} \Rightarrow \Psi^{\text{phen}}$

$$\mathcal{M}_{fi}^{\mathsf{EFT}*} = <\Psi_f^{\mathsf{phen}} \, |\mathcal{T}^{\mathsf{EFT}}| \Psi_i^{\mathsf{EFT}}> = <\Psi_f^{\mathsf{EFT}}| \sum_{i}^{A} \mathcal{O}_i^{\mathsf{EFT}} + \sum_{i < j}^{A} \mathcal{O}_{ij}^{\mathsf{EFT}} + \cdots |\Psi_i^{\mathsf{phen}}>$$

EFT* applicable to complex nuclei (A=3,4...) with essentially the same accuracy and ease as to the A=2 system.

 \Rightarrow Determine LEC(s) using observables pertaining to complex nuclei.

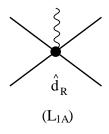
Mismatch between Ψ^{EFT} and Ψ^{phen} only affects short-distance behavior.

- ullet The use of V^{phenom} introduces high momentum components above Λ_{QCD} .
- ullet Momentum cutoff Λ_{NN} to eliminate high-momentum components

 Λ_{NN} -independence \leftrightarrow A measure of model independence of an EFT* calculation

Park et al. (2003) – EFT* calculation of the GT transitions in the A=2, 3 and 4 systems

• pp-fusion, tritium β -decay, ν -d reactions, μ -d capture, and Hep are all controlled by the common LEC, \widehat{d}^R



- \bullet \widehat{d}^R strength of contact-type four-nucleon coupling to the axial current
- \bullet \hat{d}_R can be determined from Γ_{β}^t .

EFT* calculation of pp-fusion up to NNLO

$$\Rightarrow S(0) = 3.94 \times (1 \pm 0.004) \times 10^{-24} \text{ MeV b}$$

- ullet The errors dominated by the experimental uncertainties in Γ^t_eta
- Variation in S(0) for $\Lambda_{NN} = 500$ MeV ~ 800 MeV less important

MuSun Experiment

- ullet At present, \hat{d}^R is fixed from Γ^t_{β}
- Desirable to fix \hat{d}^R from an A=2 system.

The **MuSun** experiment at PSI – Andreev et al. (MuSun Collaboration),

URL http://www.npl.uiuc.edu/exp/musun (2008)

- ullet Determination of the μd capture rate with ~ 1 % accuracy.
 - \Rightarrow Determination of \hat{d}^R within A= 2 system
- Calculation of μ -d; EFT* Ando et al.,(2001); Pionless EFT
- Chen et al., (2005)

Hep and Hen [Lazauskas, Song and Park, arXiv: 0905.3119, nucl-th]

Hep:
$${}^{3}\text{He}+p \rightarrow {}^{4}\text{He}+\nu_{e}+e$$
, Hen: ${}^{3}\text{He}+n \rightarrow {}^{4}\text{He}+\gamma$

Hep produces solar neutrinos of the highest maximum energy $(E_{\nu}^{\rm max}=18.8~{\rm MeV})$

Calculation of $\sigma(hep)$ extremely difficult !!

- Leading-order 1B term ≈ 0
- Destructive interference between suppressed 1B term and 2B term

• $S_{\text{Hep}}(0)_{\text{Salpeter}} = 630 \times 10^{-20} \text{ keV-b} \Rightarrow$

$$S_{\rm Hep}(0)_{\rm SNPA} = 9.6 \times 10^{-20} \ {\rm keV-b}$$
 ,
 $S_{\rm Hep}(0)_{\rm EFT^*} = (8.6 \pm 1.3) \times 10^{-20} \ {\rm keV-b}$

Testing the reliability of EFT* → Use the Hen reaction

ullet Hen is very similar to Hep except: EM interaction ullet Weak interaction

- $\sigma_{\text{Hen}}^{\text{exp}} = (54 \pm 6) \ \mu b$
- Two LECs can be determined from $\mu(^3H)$ and $\mu(^3He)$
- N³LO calculation gives $\sigma_{\rm Hen} =$ (38 \sim 58) μb ,
- ullet High stability against changes: $\Lambda_{NN}=500\sim900$ MeV

Points to be considered for completeness

- (i) Neutron-neutron scattering length a_{nn}
- ullet Experimental errors in a_{nn} neglected in the construction of the potential models.
- The resulting error on S_{pp} estimated to be 0.5%.

Concentrate on $\pi^- d \to \gamma nn$.

The LAMPF experiment [Howell et al., 1998]:

$$a_{nn} = -18.63 \pm 0.10 (\mathrm{stat}) \pm 0.44 (\mathrm{syst}) \pm 0.30 (\mathrm{theor}) \mathrm{fm}$$

 \implies Use of EFT [see, e.g., Gardestig, J. Phys. G, 36 (2009) 053001]

- ullet Currently accepted accuracy in $\widehat{d}_R \longrightarrow \Delta a_{nn}({\sf theor}) = 0.05 \ {\sf fm}$
- Combination of this consideration with MuSun important

(ii) Radiative corrections

Towner [Phys. Rev. C, 58 (1998) 1288] Kurylov et al. [Phys. Rev. C, 67 (2003) 035502] Fukugita and Kubota [Phys. Rev. D, 72 (2005) 071301].

- G_F from μ -decay
- "effective" g_A obtained from neutron β -decay
- \implies Radiative corrections specific to pp-fusion \sim 3-4 % effects (with 0.1 % uncertainty)

Pionless EFT

Bedaque, Hammer and van Kolck (1998); Chen, Rupak and Savage (1999)

- ullet Low energy processes with $p \ll m_\pi$
- ullet Pions "integrated out" from \mathcal{L}_{eff}
- ullet $\Lambda_{
 m cut} pprox m_\pi$ systematic expansion in powers of p/m_π
- N-N interactions and electroweak currents described by pointlike contact terms
- ullet Up to NNLO, pp fusion and other GT transitions invlove only one LEC, $L_{1,A}$, analogous to \widehat{d}^R
- KSW scheme [Kaplan, Savage and Wise (1996)] does not involve the explicit calculation of wave functions.

- \bullet At present, no direct determination of $L_{1,A}$. (relies on the theoretical values calculated in SNPA or EFT*)
- \bullet S(0) calculated in pionless EFT Up to second order: Kong and Ravndal (2001); Ando et al. (2008)

Up to fifth order: Butler and Chen (2001)

• MuSun important in this connection also

ν -d Reactions

- \bullet Precision calculation of $\nu\text{-}d$ reactions (both CC and NC) similar to pp-fusion
- ullet SNPA calculation Nakamura et~al.~ (2002) (use of Γ_{β}^t) Reliable at 1 % level
- EFT* calculation Ando et al. (2003) (agrees with SNPA calculation)
- Pionless EFT Butler, Chen and Kong (2001)
 Consistent with those of SNPA after one LEC is adjusted

Conclusions

- $S_{pp}(0)$ can be calculated with $\sim 1\%$ precision.
- The results are (in all likelihood) already available from the combination SNPA and EFT*
- MuSun experiment is very important in this context
- ullet Full EFT calculations that use Ψ^{EFT} instead of Ψ^{phen} are eagerly awaited.

For the construction of EFT-based nuclear interactions, see *e.g.*, [Epelbaum, Prog. Part. Nucl. Phys. **57**, 654 (2006)].