Neutrinos in dense matter & cooling of compact stars

David Blaschke Univ. Wrocław & JINR Dubna

Erice, September 21, 2009

PSR J0205+64 in 3C58

Neutrinos in dense matter: cooling of compact stars

David Blaschke Univ. Wrocław & JINR Dubna

- Introduction: Hadronic Cooling and EoS Problem
 - Quark Substructure and Phases
 - Hybrid Star Structure & Cooling
 - Conclusions

Erice, September 21, 2009

Compact Star Cooling - A Complex Problem

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pairing Gaps

Obs. Data

Compact Star Cooling - Introduction

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Compact Star Cooling - Introduction

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Compact Star Cooling - Phenomenology

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Temperature - age plot: characterizes compact star matter properties

Compact Star Cooling - Introduction

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pulsars in SN remnants: 1054 - Crab

Compact Star Cooling - Introduction

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Summary

Pulsars in SN remnants: 1054 - Crab

Compact Star Cooling - Hadronic Scenario

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Classification of cooling compact stars: parameter - mass

D.B., Grigorian, Voskresensky, A& A 424, 979 (2004)

Compact Star Cooling - Hadronic Scenario

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Mass distribution from population synthesis models for the solar vicinity

Popov et al: A&A 448 (2006) Typical radiopulsar masses $(1.4 \ M_{\odot})$ not sufficient to explain, e.g., Vela cooling Classification of cooling compact stars: parameter - mass

Caution: Beware of the direct Urca process!

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Inside Casino DA URCA in 1941 ...

Casino DA URCA today ...

First studied by Gamov and Schönberg, Phys. Rev. 58 (1940)

 $\varepsilon_{\nu}[DU] \sim 10^{27} T_9^6 \,\mathrm{erg} \,\mathrm{cm}^{-3} \mathrm{s}^{-1}$

Huge emissivity \rightarrow cools the star too fastly!!

Schoenberg: "the energy disappears in the nucleus of the supernova as quickly as the money disappeared at that roulette table."

Direct Urca process threshold

Lattimer, Prakash, Pethick, Haensel; PRL 66, 2701 (1991)

DU process w/o neutrino trapping ($\lambda_{\nu} \gg R, \mu_{\nu} = 0$):

 β -Equilibrium: $\mu_n = \mu_p + \mu_e$

Charge neutrality: $n_p = n_e + n_\mu \iff p_{F,p}^3 = p_{F,e}^3 + p_{F,\mu}^3$

Momentum conservation:

 $\vec{p}_{F,n} = \vec{p}_{F,p} + \vec{p}_{F,e} \iff |\vec{p}_{F,n}| \le |\vec{p}_{F,p}| + |\vec{p}_{F,e}|$

 $p_{F,n} \le p_{F,p} [1 + (1 - n_{\mu}/n_p)^{1/3}] \Rightarrow n_n \le 8 n_p - 4n_{\mu}$

$$\Rightarrow \quad \frac{n_p}{n_p + n_n} = x_p \ge \frac{1}{9} + \frac{4}{9} x_\mu$$

Luminosity:

 $L_{\nu} = (2\pi)^4 \int \frac{d^3 p_n}{(2\pi)^3 2E_n} \dots \int \frac{d^3 p_{\nu}}{(2\pi)^3 2E_{\nu}} \,\delta^3(\vec{p}_i)\delta(E_i) \,|M_{fi}|^2 \,f_n(1-f_p)(1-f_e)$

Emissivity: $\epsilon_{\nu} = \frac{L_{\nu}}{V} \sim 10^{27} \left(\frac{m_n^* m_p^*}{m_N^2}\right) \left(\frac{n_e}{n_0}\right)^{1/3} \left(\frac{T}{10^9 K}\right)^6 \frac{\text{erg}}{\text{cm}^3 s}$

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Summary

EoS and masses - DU constraint

Mass and flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL + DBHF hybrid
 Conclusions

DU threshold for most hadronic EoS active in neutron stars with typical masses ! Klähn, et al., PRC 74, 035802 (2006); [nucl-th/0602038]

- Large Mass (~ $2 M_{\odot}$) and radius ($R \ge 12 \text{ km}$) \Rightarrow stiff EoS;
- Flow in Heavy-Ion Collisions \Rightarrow not too stiff EoS !

Klähn, D.B., Typel, Fuchs, Faessler, Grigorian, Miller, Röpke, Trümper, et al: PRC 74, 035802 (2006)

DU threshold and 'hadronic' neutron stars (II)

Introduction
 Hadronic Cooling + Structure
 Quark Substructure + Phases
 Hybrid Star Structure + Cooling
 Conclusions

- DU threshold \Rightarrow sensitivity to tiny mass variations;
- Description of Vela not possible with typical masses !

S. Popov et al., PRC 74 (2006); D.B. and H. Grigorian, Prog. Part. Nucl. Phys. 59 (2007) 139

DU threshold and 'hadronic' neutron stars (III)

Introduction
 Hadronic Cooling + Structure
 Quark Substructure + Phases
 Hybrid Star Structure + Cooling
 Conclusions

• DU threshold: overpopulation of a small mass window;

• Hadronic cooling not fast enough to describe Vela with $M < 1.5 M_{\odot}$!

D.B. and H. Grigorian, Prog. Part. Nucl. Phys. 59 (2007) 139; [astro-ph/0612092]

Quark Substructure and Phase Diagram

Phase diagram of QCD: Chiral quark models

Quantum Field Theory for chiral Quark Matter

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF Hybrid
 d-CSL + DBHF hybrid
 Conclusion

• Partition function for chiral Quark Field theory

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int_{V}^{\beta} d\tau \int_{V} d^{3}x [\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m - \gamma^{0}\mu + i\lambda_{3}\phi_{3})\psi - \mathcal{L}_{\text{int}} + U(\Phi)]\right\}$$

Polyakov loop: $\Phi = N_{c}^{-1} \text{Tr}_{c}[\exp(i\beta\lambda_{3}\phi_{3})]$

- Current-current coupling (4-fermion interaction) $\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M (\bar{\psi}\Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^C \Gamma_D \psi)^2$
- Bosonisation (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}\phi_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \exp\left\{-\sum_M \frac{\phi_M^2}{4G_M} - \sum_D \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \operatorname{Tr} \ln S^{-1}[\{M_M\}, \{\Delta_D\}]\right\}$$

• Collective (stochastic) Fields: Mesons (ϕ_M) and Diquarks (Δ_D)

- Systematic Evaluation: Mean field + Fluctuations
 - Mean-field Approximation: Order parameter for Phase transitions (Gap equations)
 - Fluctuations (2. Order): Hadronic Correlations (Bound- & Scattering states)
 - Fluctuations of higher Order: Hadron-Hadron Interaction

Phase diagram for 3-Flavor Quark Matter

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Summary

Thermodynamic Potential $\Omega(T, \mu) = -T \ln Z[T, \mu]$

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}S^{-1}(i\omega_n, \vec{p})\right) + \Omega_e - \Omega_0$$

InverseNambu – GorkovPropagator
$$S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \widehat{\Delta}(\vec{p}) \\ \widehat{\Delta}^{\dagger}(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{bmatrix},$$

$$\Delta_{k\gamma} = 2G_D \langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} g(\vec{q}) q_{j\beta}^C \rangle. \quad \widehat{\Delta}(\vec{p}) = i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} \Delta_{k\gamma} g(\vec{p}).$$

Fermion Determinant (Tr $\ln D = \ln \det D$)

$$\operatorname{Indet}\left(\frac{1}{T}S^{-1}(i\omega_n, \vec{p})\right) = 2\sum_{a=1}^{18} \ln\left(\frac{\omega_n^2 + \lambda_a(\vec{p})^2}{T^2}\right)$$

Result for the thermodynamic Potential (Meanfield approximation)

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln\left(1 + e^{-\lambda_a/T}\right)\right] + \Omega_e - \Omega_0.$$

Neutrality constraints: $n_Q = n_8 = n_3 = 0$, $n_i = -\partial \Omega / \partial \mu_i = 0$, Equations of state: $P = -\Omega$, etc.

Three-flavor Quark Matter Phase Diagram

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

Rüster et al, PRD 72 (2005) 034004; Blaschke et al, PRD 72 (2005) 065020; Abuki, Kunihiro, NPA768 (2006) 118; Warringa et al, PRD 72 (2005) 014015 The phases are:

- NQ: $\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$;
- NQ-2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$, $0 \le \chi_{2SC} \le 1$;
- 2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$;
- uSC: $\Delta_{ud} \neq 0$, $\Delta_{us} \neq 0$, $\Delta_{ds} = 0$;
- CFL: $\Delta_{ud} \neq 0, \, \Delta_{ds} \neq 0, \, \Delta_{us} \neq 0;$

Result:

- Gapless phases only at high T,
- CFL only at high chemical potential,
- At T \leq 25-30 MeV: mixed NQ-2SC phase,
- Critical point $(T_c, \mu_c) = (48 \text{ MeV}, 353 \text{ MeV}),$
- Strong coupling, $G_D = G_S$, similar, no NQ-2SC mixed phase.

Mass-Radius constraint and Flow constraint (II)

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

- Large Mass (~ 2 M_☉) and radius (R ≥ 12 km) ⇒ stiff quark matter EoS;
 Note: DU problem of DBHF removed by deconfinement! and: CFL core Hybrids unstable!
- Flow in Heavy-Ion Collisions ⇒ not too stiff EoS !
 Note: Quark matter removes violation by DBHF at high densities

Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper: Phys. Lett. B567, 160 (2007)

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

Phase diagram for isospin-symmetric hybrid matter

Trajectories of heavy-ion collisions for different E_{lab}

D.B., F. Sandin, V. Skokov: "Accessibility of dense QCD phases ..."; http://theor.jinr.ru/twiki-cgi/view/NICA/NICAWhitePaper

General Relativistic Cooling Equations

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

The energy flux per unit time l(r) through a spherical slice at distance r from the center is:

$$\boldsymbol{l}(\boldsymbol{r}) = -4\pi r^2 \boldsymbol{k}(\boldsymbol{r}) \frac{\partial (Te^{\Phi})}{\partial r} e^{-\Phi} \sqrt{1 - \frac{2M}{r}}.$$

The factor $e^{-\Phi}\sqrt{1-\frac{2M}{r}}$ corresponds to relativistic corrections of time and distance scales. The equations for energy balance and thermal energy transport are:

$$\begin{split} \frac{\partial}{\partial N_B} (le^{2\Phi}) &= -\frac{1}{n} (\epsilon_{\nu} e^{2\Phi} + c_V \frac{\partial}{\partial t} (Te^{\Phi})) \\ \frac{\partial}{\partial N_B} (Te^{\Phi}) &= -\frac{1}{k} \frac{le^{\Phi}}{16\pi^2 r^4 n} \end{split}$$

where n = n(r) is the baryon number density, $N_B = N_B(r)$ is the total baryon number in the sphere with radius r and

$$\frac{\partial N_B}{\partial r} = 4\pi r^2 n (1 - \frac{2M}{r})^{-1/2}$$

F. Weber: Pulsars as Astrophys. Labs ... (1999); D.B., Grigorian, Voskresensky, A& A 368 (2001) 561.

Neutrino processes in quark matter: Emissivities

1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Conclusions

• Quark direct Urca (QDU) the most efficient processes $d \rightarrow u + e + \bar{\nu}$ and $u + e \rightarrow d + \nu$ $\epsilon_{\nu}^{\text{QDU}} \simeq 9.4 \times 10^{26} \alpha_s u Y_e^{1/3} \zeta_{\text{ODU}} T_0^6 \text{ erg cm}^{-3} \text{ s}^{-1},$ Compression $u = n/n_0 \simeq 2$, strong coupling $\alpha_s \approx 1$

 $d+q \rightarrow u+q+e+\bar{\nu} \text{ and } q_1+q_2 \rightarrow q_1+q_2+\nu+\bar{\nu}$

 $\epsilon_{\nu}^{\text{QMU}} \sim \epsilon_{\nu}^{\text{QB}} \simeq 9.0 \times 10^{19} \zeta_{\text{OMU}} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}.$

- Quark Modified Urca (QMU) and Quark Bremsstrahlung (QB) **QMU** and **QB** : $\zeta_{\text{QMU}} \sim \exp(-2\Delta_q/T)$ for $T < T_{\text{crit},q} \simeq 0.57 \Delta_q$ 11
- $e+e \rightarrow e+e+\nu+\bar{\nu}$ $\epsilon_{\mu}^{ee} = 2.8 \times 10^{12} Y_e^{1/3} u^{1/3} T_0^8 \text{ erg cm}^{-3} \text{ s}^{-1},$ becomes important for $\Delta_a/T >> 1$

• Suppression due to the pairing

QDU : $\zeta_{\text{QDU}} \sim \exp(-\Delta_a/T)$

FLOWERS, ITOH, APJ 250 (1981) 750; SCHAAB, VOSKRESENSKY, SEDRAKIAN, WEBER, WEIGEL, A & A 321 (1997)591 YAKOVLEV, LEVENFISH, SHIBANOV, PHYS. USP. 169 (1999) 825; BAIKO, HAENSEL, ACTA PHYS. POLON. B 30 (1999) 1097 BLASCHKE, GRIGORIAN, VOSKRESENSKY, ASTRON. & ASTROPHYS. 368 (2001) 561; JAIKUMAR, PRAKASH, PLB 516 (2001) 345 JAIKUMAR, ROBERTS, SEDRAKIAN, PRC 73 (2006) 034012; WANG, WANG, WU, PRC 74 (2006) 014021

Introduction
 Hadronic Cooling
 Quark Matter Phase Diagram
 Hybrid Star Cooling
 Conclusions

2SC phase: 1 color (blue) is unpaired (mixed superconductivity)

Ansatz 2SC + X phase:

 $\Delta_X(\mu) = \Delta_0 \exp[\alpha(1 - \mu/\mu_c)]$

Grigorian, D.B., Voskresensky, PRC 71 (2005)

Model	Δ_0 [MeV]	α
Ι	1	10
II	0.1	0
III	0.1	2
IV	5	25

Popov, Grigorian, D.B., PRC 74 (2006)

Pairing gaps for hadronic phase AV18 - Takatsuka et al. (2004)

and 2SC + X phase

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

2SC + X phase, $\Delta_0 = 1$ MeV, $\alpha = 10$ Too large mass for Vela required

Log N - Log S test fails

Popov, Grigorian, D.B., PRC 74 (2006)

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

2SC + X phase, $\Delta_0 = 5$ MeV, $\alpha = 25$ Temperature-age and Vela mass OK

Log N - Log S test passed

Popov, Grigorian, D.B., PRC 74 (2006)

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Conclusions

Hybrid star cooling passes all modern tests:

- Temperature age
- Log N Log S
- Brightness constraint
- Vela mass (Population sysnthesis)

Popov, Grigorian, D.B., PRC 74 (2006) D.B., H. Grigorian, PPNP (2007)

Phase diagram: effect of neutrino trapping

Phase diagrams of charge neutral quark matter in β -equilibrium at strong coupling, $\eta = 1.0$, for fixed values of the electron neutrino chemical potential, $\mu_{\nu} = 0$ (left-hand side) and $\mu_{\nu} = 200$ MeV (right-hand side).

F. Sandin, D.B., [arxiv:astro-ph/0701772] PRD (2007)

Hybrid stars: Effect of neutrino untrapping

5. Conclusions

The effect of neutrino untrapping $(Y_{le} = 0.4 \rightarrow 0)$ on hybrid star configurations. The release of gravitational binding energy amounts to $\approx 0.04 M_{\odot}$. Blue rectangle in lower right is the constraint by Podsiadlowski et al., MNRAS (2005)

F. Sandin, D.B., T. Klähn, in preparation (2007)

Introduction
 Hadronic Cooling + Structure
 Quark Substructure + Phases
 Hybrid Star Structure + Cooling

d-quark 'dripline' and single-flavor (d-CSL) phase

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

D.B., F. Sandin, T. Klähn, J. Berdermann, arXiv:0807.0414 [nucl-th]; arXiv:0808.1369 [astro-ph] arXiv:0808.0181 [nucl-th], J. Phys. G, in press

Sequential deconfinement in asymmetric NS matter

Single-flavor (d-CSL) phase in competition

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid

Ansatz: isotropic Color-spin-locking (CSL) $\hat{\Delta} = \Delta(\gamma^3 \lambda_2 + \gamma^1 \lambda_7 + \gamma^2 \lambda_5)$ Aguilera et al., PRD 72 (2005) 034008; PRD 74 (2006) 114005

d-CSL: single-flavor phase in competition

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

Dash-dotted lines: border between oppositely charged phases \implies single-flavor phase only in isospin-asymmetric matter!

D.B., F. Sandin, T. Klähn, J. Berdermann, arXiv:0807.0414 [nucl-th]; arXiv:0808.1369 [astro-ph]

d-CSL: single-flavor phase in neutron stars

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

Equation of state

Configuration Sequences

D. B., F. Sandin, T. Klähn, J. Berdermann, arXiv:0807.0414 [nucl-th]; arXiv:0808.1369 [astro-ph]; arXiv:0808.0181 [nucl-th], J. Phys. G, in press (2008).

d-CSL: single-flavor phase in neutron stars (II)

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

d-quark drip at crust-core boundary: Candidate for "deep crustal heating" (DCH) process?

D. B., F. Sandin, T. Klähn, J. Berdermann, arXiv:0807.0414 [nucl-th]

d-CSL: single-flavor phase in neutron stars

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

not operative since u-quark Fermi sea not populated ($p_{F,u} = 0$)

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF hybrid
 d-CSL hybrid
 Conclusion

Cooling of X-ray transient KS 1731: too fast without "deep crustal heating" (DCH) process!

K. Levenfish, P. Haensel (2007)

Wide variety of supernovas - progenitor mass dependence

Supernova Collapse in the Phase Diagram

Supernova Collapse in the Phase Diagram (II)

Supernova Collapse in the Phase Diagram

Equation of State for Supernova Applications

What has happened here ??

Supernova 1987A - 20 years later:
Explosion powered by QCD transition?
Approximate hurst signal?

• Antineutrino burst signal?

Work by Sagert et al. arxiv:0809.4225

Conclusions

Constraints on the high-density EoS

- Compact star masses $\sim 2 M_{\odot}$ require stiff EoS
- Flow data provide upper limits on the stiffness

Local charge neutrality: 2SC + DBHF hybrid

- diquark coupling lowers phase transition density
- vector meanfield stiffens quark matter EoS

Global charge neutrality: d-CSL + DBHF hybrid

- single flavor phase (d-CSL) as consequence of dynamical χ SR
- no d-CSL in symmetric matter: $x_{p,crit} < 0.2$
- no Urca cooling processes \rightarrow no neutrino trapping?

Next steps

- apply to superbursts, X-ray transients, high-mass supernovae
- extend to inhomogeneous phases: surface tension and Coulomb effects

New ways to understand Dense Matter

Dense QCD Phases in Heavy Ion Collisions and Supernovae

October 11-13, 2009 Prerow, Germany www.mpg.uni-rostock.de/~hic4fair

Organizers

C. Greiner J. Wambach D. Blaschke

Local Organizers

G. Röpke A. Wierling D. Zablocki

Nonequilibrium and Transport Phenomena in Dense Matter

- Equation of State and QCD Phase Transitions
- Hadron Production in Heavy Ion Collisions
- QCD in Compact Stellar Objects, Supernovae and Mergers

Modeling and Observation of Neutron Stars

Observatoire de Meudon, France

November, 2009, 16th - 20th

Topics:

- Radio timing, rotating neutron stars,
- General relativity and neutron star modelisation,
- Equation of state,
- Observation at different wave lengths,
- Emission processes and supernovae
- Supernovae remnants and pulsar wind nebulae.

Organizing committee: M. Lemoine-Goumard (Bordeaux), J. Margueron (IPN Orsay), M. Oertel (LUTH, Meudon), M. Renaud (APC, Paris), G. Theureau (GEPI, Observatoire de Paris).

<u>Contact:</u> M. Oertel, LUTH, +33 (0)1 45 07 75 36, <u>micaela.oertel@obspm.fr</u> <u>More informations:</u> snns.in2p3.fr/mode/

THANKS FOR ... ATTENTION! ... INVITATION!

THANKS FOR ... ATTENTION! ... INVITATION!

Mass and Flow constraint
 Chiral Quark model
 2SC + DBHF Hybrid
 d-CSL + DBHF hybrid
 Conclusions

From Urca process ... to Erice process ??