

Supernova neutrino-nucleus reactions

Karlheinz Langanke

GSI & TU Darmstadt

Erice, September 2009

Karlheinz Langanke (GSI & TU Darmstadt) Supernova neutrino-nucleus reactions

- supernova neutrinos due to electron captures
- inelastic neutrino-nucleus scattering
- consequences for observation of neutrino-burst
- neutrino nucleosynthesis

• . . .

Core-collapse supernova.

Electron captures in core collapse.

• T = 0.5-2.0 MeV, $\rho = 10^8$ -10¹³ g cm⁻³.

• The dynamical time scale set by electron captures:

 $e^- + (N, Z)
ightarrow (N+1, Z-1) +
u_e$

• Evolution decreases number of electrons (Y_e) and Chandrasekhar mass $(M_{Ch} \approx 1.4(2Y_e)^2 \text{ M}_{\odot})$

• Capture rates on individual nuclei computed by:

- Shell Model (*A* < 65)
- Shell Model Monte Carlo (A > 65)
- RPA with parametrized occupation numbers (A > 115)

A (10) > A (10) > A (10)

Gamow-Teller strength distributions in pf-shell nuclei.

shell model results agree after overall quenching by $(0.77)^2$

With Rampp & Janka (General Relativistic model) $15 M_{\odot}$ presupernova model from A. Heger & S. Woosley

2

* 王

'Standard' core trajectory at bounce

Electron captures on nuclei and protons are self-regulating leading to the same trajectories at bounce for different stellar masses (H.Th. Janka, A. Marek, G. Martinez-Pinedo)

'Standard' neutrino burst

- shock dissociates matter into free protons and neutrons
- fast electron captures on free protons create ve neutrino burst
- standard' v_e bursts
- future observation by supernova neutrino detectors
- standard neutrino candles'?

Inelastic *v*-nucleus scattering in supernovae

Potential consequences:

- thermalization of neutrinos during collapse
- preheating of matter before passing of shock
- nucleosynthesis, vp-process
- supernova neutrino signal

- neutrino cross sections from
 (e, e') data
- validation of shell model
- G.Martinez-Pinedo, P. v. Neumann-Cosel, A. Richter

< 17 ▶

.

Supernova neutrino signal

inelastic $\nu\text{-nucleus}$ scattering adds to the opacity for high-energy neutrinos

B. Müller, H.-Th. Janka, G. Martinez-Pinedo, A. Juodagalvis, J. Sampaio

< 17 ▶

Consequences for supernova neutrino detectors

Detector	Material	$\langle \sigma \rangle$ (10 ⁻⁴² cm ²)		Change
		With $A(\nu, \nu')A^{\star}$	Without $A(\nu, \nu')A^*$	•
SNO	d	5.92	7.08	16%
MiniBoone	¹² C	0.098	0.17	43%
	¹² C (N _{gs})	0.089	0.15	41%
S-Kamiokande	¹⁶ O	0.013	0.031	58%
lcarus	⁴⁰ Ar	17.1	21.5	20%
Minos	⁵⁶ Fe	8.8	12.0	27%
OMNIS	²⁰⁸ Pb	147.2	201.2	27%

Change in supernova neutrino spectra reduce detection rates!

Karlheinz Langanke (GSI & TU Darmstadt) Supernova neutrino-nucleus reactions

Neutrinos from supernovae

Karlheinz Langanke (GSI & TU Darmstadt) Supernova neutrino-nucleus reactions

Neutrino nucleosynthesis

A. Heger et al, PLB 606 (2005) 258

Product	Parent	Reaction
¹¹ B	¹² C	$(\nu, \nu' n), (\nu, \nu' p)$
¹⁹ F	²⁰ Ne	$(\nu, \nu' n), (\nu, \nu' p)$
¹³⁸ La	¹³⁸ Ba	(ν_{e}, e^{-})
	¹³⁹ La	$(\nu, \nu' n)$
¹⁸⁰ Ta	¹⁸⁰ Hf	(ν_e, e^-)
	¹⁸¹ Ta	$(\nu, \nu' n)$

2

★ E ► ★ E

- ¹¹B and ¹⁹F are produced by neutral-current reactions induced by ν_{μ} and ν_{τ} neutrinos and anti-neutrinos
- *v
 _e* neutrinos observed from SN1987a
- 138 La and 180 Ta are produced by charged-current reactions induced by ν_e neutrinos on 138 Ba and 180 Hf
- In summary, one has a sensitivity to ALL different neutrino spectra

However, neutrino cross sections based on theoretical models (RPA)

Measurement of GT strength for ¹³⁸Ba and ¹⁸⁰Hf

RCNP Osaka/ Darmstadt (A. Byelikov *et al.*)

< A

Improved nuclear ingredients for supernova simulations

- Electron capture rates on nuclei change collapse trajectory
- Neutrino-nucleus cross sections have impact on neutrino-burst signal
- Neutrino-nucleosynthesis might serve as neutrino thermometer