

SNO+

Simon JM Peeters

Scintillator, calibration and its rich neutrino physics program

Erice 2009

Contents

- Detector aspects
 - LAB scintillator
 - Calibration
- SNO+ program
- Neutrino measurements:
 - Solar neutrinos
 - CNO neutrinos
 - pep neutrinos
 - Geo neutrinos
 - Reactor neutrinos
 - SN neutrinos
- Summary & conclusions

SNO+ scintillator

- Compatible with acrylic (undiluted), but not polypropylene
- Safe: high flash point, low toxicity
- High light yield, long attenuation length
- Low cost
- Density = 0.86 g/cm³ (buoyancy!)
- Nd-carboxylate solutions have been stable at 0.1% and 1% concentrations for over 2.5 years.

PPO

Scintillator response

- 450 observed photons per MeV
- Resolution of 5% at 1 MeV
- $k_B = 71.9 \pm 3.9 \ \mu m/MeV$
- We can observe the difference between αs and βs

"bucket" test in water-filled SNO+

Time Residual Ratio Peak:Total

Fluid processing in SNO+

Several fluids to handle

Light water, bulk scintillator, fluor (PPO) solution, neodymium-loaded compound

Scintillator purification & processing

- Purification methods:
 - water & gas stripping •
 - distillation
 - metal scavenger ·····
- Designed by KMPS (Borexino)
- Purification system pit excavation underway

Calibration

New calibration program is being developed. Following the lessons of SNO, it is focused around redundancy and continuous monitoring.

Much of the related hardware is also being adapted.

Adapted

5

Embedded LED Light Injection Entity (ELLIE)

Collimated fibres mounted on the PMT holding structure emitting LED light for:

- Timing calibration (fast light pulses, broad bundles)
- Absorption length monitoring (different wavelengths, collimated bundles)
- Position reference for camera system (diffused, continuous light)

SNO+ program (selection thereof)

(non-DBD) Neutrino Physics

Solar signal & backgrounds

²¹⁰Bi (U), ⁴⁰K are most important for solar studies. Borexino has demonstrated similar levels of backgrounds.

pep expectation

CNO & the solar opacity problem

Incompatible with helioseismology measurements:

(see Haxton and Serenelli, Ap. J. 687, 678 (2008)) core is different than the convective zone (opacity). Improved 3D hydrodynamic modeling (Asplund, Grevesse and Sauval, 2005) of result in lower Z by a factor of almost 2! Source BPS08(GS) BPS08(AGS) Difference

21 Sep 2009

(See also A. Kopylov's talk)

Simon JM Peeters,

CNO

Use ⁸B to constrain the environmental variations relevant for CNO

SNO & SNO+ working together!

(Assuming measurement of CNO to ~10%)

Reactor anti-neutrinos

Observe via IBD: $\overline{v}_e + p \rightarrow n + e^+$

Geo anti-neutrinos

(see also S.Smith's talk)

Check models of radiogenic heat production inside the earth

1000 tons CH2:

- KamLAND: 33 geoneutrino and 142 reactor events per year
- SNO+: 44 geoneutrino and 38 reactor events per year
- SNOLAB has simple well-understood geology: significant continental crust plus mantle (20% from mantle)

Supernova neutrinos

(see also G.Raffelt's talk)

Alte		Neutrino Reaction	Expected Counts
SNEWS	Charged Current	$v_e + p \rightarrow n + e^+$	260
	CC = 47%	v_e + ¹² C \rightarrow ¹² N + e^-	30
SNO+ is planning to (re)join SNEWS		v_e + ¹² C \rightarrow ¹² B + e^+	10
	Neutral Current	v_{x} + ¹² C \rightarrow ¹² C * + v_{x}	60
	NC = 51%	$v_x + p \rightarrow v_x + p$	270
	Elastic Scattering	$v_{x} + e \rightarrow v_{x} + e^{-}$	12
	ES = 2%	TOTAL	642

SNO+ electronics will be Nominal Signal for 10 kpc upgraded (see C. Kraus' talk) and therefore able to handle very high data rates. (Special SN calibration source is being developed to test the DAQ)

Summary

- SNO+ to start data taking in 2011.
- Funding is complete.
- Activities to prepare for construction in the cavity and on the fluid processing.

Thank you for your attention