Westfälische Wilhelms-Universität Münster

v oscillations with a polarized laser beam: an analogical demonstration experiment

Int. School on Nuclear Physics, Erice, Italy, September 16-24, 2009

C. Weinheimer, H. Baumeister, T. Bode, P. Boschan, G. Hackmann

Westfälische Wilhelms-Universität Münster, Germany Email: weinheimer@uni-muenster.de

- Motivation
- 2 flavour v vacuum oscillation
- Bifringence
- Optical analogue
- Experiment

Motivation: neutrino oscillation is

- one of the largest discoveries of the last decade in nuclear/particle/astroparticle physics
- our only evidence for physics beyond the Standard Model
- so well proven, that it turned into textbook knowledge
- based on a general feature of mixed two-state systems, e.g. $K_0 - \overline{K_0} (B_0 - \overline{B_0}, ..)$ oscillation
- does not need advanced quantum physics, but is not easy to understand for senior high school or 1st/2nd year university students although they are familiar with the double slit experiment

⇒ Try to explain neutrino oscillation without simplifications by an analogue experiment using the two-state system of polarized light, which can be permformed in senior high school classes / with 2nd year students Incredients:

1) non-trivial v mixing matrix U between

neutrino flavour states (v_e, v_μ, v_τ) and mass states (v_1, v_2, v_3):

$$\begin{pmatrix} \boldsymbol{\nu}_{\mathbf{e}} \\ \boldsymbol{\nu}_{\mu} \\ \boldsymbol{\nu}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

2) a flavour state propagates as a coherent sum of mass states $m(v_i)$ if the $m(v_i)$ differ \Rightarrow neutrino oscillation

2 flavour neutrino (vacuum) oscillations: the two essential incredients

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \quad \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix}$$

$$2 \text{ states mixing}$$

$$\bigvee_{\mu} \quad \bigvee_{\mu} \quad \begin{cases} \sin \theta & \bigvee_{1} & \cos \theta \\ \cos \theta & \bigvee_{2} & -\sin \theta \end{cases} \quad \bigvee_{e} \quad \bigvee_{e} \quad \bigvee_{e} \quad \bigvee_{e} \quad \end{pmatrix}$$

$$pure flavor rotating back propagation rotating pure flavour$$

$$P(\nu_{e} \rightarrow \nu_{\mu}) = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} & U & \begin{pmatrix} e^{-iE_{1}t} & 0 \\ 0 & e^{-iE_{2}t} \end{pmatrix} & U^{-1} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2}$$

$$= \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} e^{-iE_{1}t} & 0 \\ 0 & e^{-iE_{1}t} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2}$$

$$= \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} e^{-iE_{1}t} \begin{pmatrix} 1 & 0 \\ 0 & e^{-iE_{2}t} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2}$$

$$= \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-iE_{1}t} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right|^{2}$$

$$= \sin^{2}(2\theta) \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right)$$

$$= \sin^{2}(2\theta) \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right)$$

4

Reminder: birefringence

If an optical medium is anisotropic (intrinsic, by a tension, ...) it exhibits different refraction indices

A birefringent crystal has one "optical axis" ordinary beam: pol. vector $E \perp$ to optical axis

with refraction index n_o

extraordinary beam: pol. vector E (partly) || to optical axis with refraction index n

No "double image" but different phase propagation, if the entrance surface of the crystal contains the optical axis

2 polarized photon state oscillations: the same two incredients

$$\begin{pmatrix} ``u_{e}'' \\ ``u_{\mu}`` \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} u_{o} \\ u_{e} \end{pmatrix} \begin{pmatrix} u_{o} \\ u_{e} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} ``u_{e}'' \\ ``u_{\mu}'' \end{pmatrix}$$

$$U^{-1}$$

$$2 \text{ states mixing}$$

$$U^{+} \quad V_{\mu} \quad \begin{cases} \sin\theta & V_{o} \\ \cos\theta & V_{e} \\ \end{bmatrix} \quad Cos\theta \quad V_{e} \\ \downarrow^{+} \quad V_{\mu} \\ \text{pure flavor rotating back propagation rotating pure flavour}$$

$$P(``u_{e}`` -`u_{\mu}``) = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} & U & \begin{pmatrix} e^{-2\pi i Ln_{e}/\lambda} & 0 \\ 0 & e^{-2\pi i n_{e}L/\lambda} \end{pmatrix} & U^{-1} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2} \\ = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} e^{-2\pi i n_{e}L/\lambda} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2} \\ = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} e^{-2\pi i n_{e}L/\lambda} \begin{pmatrix} 1 & 0 \\ 0 & e^{-2\pi i n_{e}L/\lambda} \end{pmatrix} \begin{pmatrix} \cos\theta \\ -\sin\theta \end{pmatrix} \right|^{2} \\ = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-2\pi i n_{e}L/\lambda} \end{pmatrix} \begin{pmatrix} \cos\theta \\ -\sin\theta \end{pmatrix} \right|^{2} \\ = \sin^{2}(2\theta) \sin^{2} \left(\frac{\Delta nL}{\lambda/\pi} \right) \\ = \sin^{2$$

Idea of the demonstration experiment

Our birefringent crystals

LTB: lithium tetra borate $Li_2B_4O_7$

Experimental setup

Experimental setup

Westfälische Wilhelms-Universität Münster

Changing the "oscillations length" L

wedge angle: 0.2° each crystal moves ≈ 5 mm $\Delta L \approx 38 \ \mu m$ $\lambda_{osc} = 11 \ \mu m$

measure position by linear potentiometer

11

Changing the "mixing angle" $\boldsymbol{\theta}$

by turning the crystal table with respect to the polarization directions

Westfälische Wilhelms-Universität Münster

Optical demonstration experiment for 2 flavour neutrino vacuum oscillations with both essential features: - mixing of two microscopic states

- mixing of two microscopic states
- coherent propagation (double slit exp.)
- fully analogical calculation to $\boldsymbol{\nu}$ oscillation
- easy variation of mixing angle θ

Conclusions

- Experiment can be build with high school or lab class equipment (excluding bifrigent crystals: ≈100 Euro each)
- Another demonstration experiment with coupled pendula (with a macroscopic 2 state system): Neutrino pendulum by Michael Kobel et al., TU Dresden (http://neutrinopendel.tu-dresden.de/animation.html)

and with: