SNO and the new SNOLAB

SNOLAB: A New International Facility for AstroParticle-Physics Research

Overview and Status of the facility
Current Scientific programme, including
Status of SNO analysis

Art McDonald Queen's University

The Motivation for SNOLAB:

- To promote an International programme of Astroparticle Physics
- To provide a very deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays
- To provide a very clean laboratory: Entire lab at better than class 2000 to mitigate against contamination of experiments.
- Focus on dark matter, double beta decay, solar & SN experiments requiring depth and cleanliness of SNOLAB. Also provide space for prototyping of future experiments.
- Large scale expt's = ktonne, not Mtonne.
- The goal has been to create a significant amount of space for an active experimental programme and support the current generation of experiments as early as possible.

Surface Facility

Underground Lab Clean Room

2km overburden (6000mwe)

Muon Flux = 0.27/m²/day

SNOLAB Underground facilities

The Sudbury Neutrino Observatory: SNO

Acrylic vessel (AV) 12 m diameter

1000 tonnes D₂O (\$300 million)

1700 tonnes H_2O

inner shielding

5300 tonnes H_2O

outer shielding

~9500 PMT's

Entire laboratory
 Built as a Class 2000
 Clean room
 Low Radioactivity
 Detector materials

The heavy water has been returned and development work is in progress on SNO+ with liquid scintillator and ¹⁵⁰Nd additive for double beta decay.

SNO: One million pieces transported down in the 9 ft x 12 ft x 9 ft mine cage and re-assembled under ultra-clean conditions. Every worker takes a shower and wears clean, lint-free clothing.

Over 70,000 Showers to date and counting

Surface Facilities

SNOLAB Schedule

- Underground Construction (Cube Hall, Cryopit, Ladder Labs, Lab Entrance)
 - Excavation 100% complete.
 - Outfitting began June 2007. Now essentially complete.
 - Spaces available now for experimental infrastructure installation..
 - Final infrastructure (Chiller, MPC, waste water plant) commissioned
 - Commissioning and final cleaning started in November, 2008. Ongoing with installation of experiments.
- Surface Facility
 - Operational since 2005
- **Experimental Program**
 - Initial assignments of space underground.
 - Current allocations to: PICASSO, DEAP I, SNO+, DEAP-3600, MiniCLEAN SuperCDMS, HALO.
 - July: CFI funding for DEAP-3600, SNO+: \$26.4 Million (incl/matching)
 - Anticipated or under discussion: EXOgas 200, COUPP, 2-phase LAr, low background counters to measure ³⁹Ar, future Cobra upgrade...

<u>SNOLAB Experimental Program</u>

Experiment	Solar Nu	0nuBB	Dark Matter	Super nova	GeoNu	Other	Space Allocated	Status
SNO+	X	Х		Х	Х		SNO	Install
							Cavern	2009
PICASSO			х				SNO Utility	Runnina
							Room	
			v				SNO Control	Bunning
DEAFT			~					Kunning
							Room	
MiniCLEAN			Х				Cube	Install
360							Hall	2009
DEAP							. .	
			Х				Cube	Install
3600							Hall	2009
EXO		X						Install
								2010?
SuperCDMS			Х				Ladder	Install
							Labs	2010?
ΗΔΙΟ				x				Install
				Χ				2000
								2009
PUPS						Seismic	Various	Running
							Locations	

Experimental Program: Operational Schedule

Neutrino-Less Double Beta Decay $T_{1/2} = F(Q_{\beta\beta},Z) |M^{0\nu}|^2 < m_{\nu\beta\beta} >^2$ $\mathbf{m}_{vBB} = |\sum_{i} U_{ei}^2 \mathbf{m}_{i}|$ $m_{\nu\beta\beta} = |m_1 \cos^2\theta_{13} \cos^2\theta_{12} + m_2 e^{2i\alpha} \cos^2\theta_{13} \sin^2\theta_{12} + m_3 e^{2i\beta} \sin^2\theta_{13}|$ **Mass Hierarchies** m^2 m^2 (eV) 90% CL (1 dof) **Present Expts.** ଞ୍ଚି10⁻¹ E Inverted Degenerate m_3^2 0.04 eV $\Delta m_{23}^2 < 0$ $\int \text{solar} \sim 5 \times 10^{-5} \text{eV}^2$ disfavoured by cosmology atmospheric 10^{-2} $\sim 3 \times 10^{-3} eV^2$ atmospheric m_2^2 . $\sim 3 \times 10^{-3} eV^2$ $\Delta m_{23}^2 > 0$ solar~ $5 \times 10^{-5} eV^2$ $m_1^2_{-}$ m_{3}^{2} 10^{-3} Normal 9 0 0 (d) 10^{-4} Normal Inverted 10⁻² 10^{-3} 10^{-4} 10^{-1} Lightest neutrino (m₁) in eV SNOLAB: ¹⁵⁰Nd (SNO+), ¹³⁶Xe (EXO-gas)

SNO+: Neutrino-less Double Beta Decay: ¹⁵⁰Nd

- Nd is one of the most favorable double beta decay candidates with large phase space due to high endpoint: 3.37 MeV.
- Ideal scintillator (Linear Alkyl Benzene) has been identified. More light output than Kamland, Borexino, no effect on acrylic.
- Nd metallic-organic compound has been demonstrated to have long attenuation lengths, stable for more than 2 years.
- 1 tonne of Nd will cause very little degradation of light output. (Successful test in 2008 with small chamber in center of SNO)
- Isotopic abundance 5.6% (in SNO+ 1 tonne Nd = 56 kg ¹⁵⁰Nd)
- Possible enrichment of ¹⁵⁰Nd or perhaps increase in the amount of natural Nd via nanoparticles.
- SNO+ Capital proposal fully funded.
- Plan to start with natural Nd in 2011.
- Other physics: CNO solar neutrinos, pep solar neutrinos to study neutrino properties, geo-neutrinos, supernova search. (No ¹¹C background at this depth.)
- (See talks by Kraus, Peeters in parallel sessions)

SNO+ : Liquid Scintillator with Nd for Double Beta Decay + Solar, geo - v

Otherwise, the existing detector, electronics etc. are unchanged.

SNO+ (¹⁵⁰Nd ν - less Double Beta Decay)

Sensitivity Limits (3 yrs): 1000 kg natural Nd (56 kg isotope): $m_{\nu\beta\beta} \sim 0.1 \text{ eV}$ (start 2011) With 500 kg ¹⁵⁰Nd: $m_{\nu\beta\beta} \sim 0.04 \text{ eV}$

EXO-gas R & D

 Part of the EXO double beta decay collaboration, led by David Sinclair of Carleton, in addition to their work on a 200kg liquid
 ¹³⁶Xenon detector, is working on R&D for a pure Xe gas detector, with observation of the double beta decay via electroluminescence and extraction of the Ba daughter ions and identification via mass spectrometry.

- Electroluminescence will be detected by a design being developed with CsI that is based on the FERMILAB RICH counters.
- Extraction and mass spectrometry of the Ba ions will build on a successful design in operation at the Leuven Radioactive Beam Source.

Direct Dark Matter Detection

Variety of techniques used to discriminate: Light, Heat, Ionization, bubbles

Dark Matter at SNOLAB

Noble Liquids: Deap I, MiniClean-360, & DEAP-3600: • Single Phase Liquid Argon or Neon.

- Uses pulse shape discrimination (PSD) based on timing of decay light
- Prototype DEAP I Installed in SNOLAB now. Very successful demonstration of PSD. To be followed by MiniClean, DEAP-3600
- Will measure Spin Independent cross-section.

Superheated Liquids: PICASSO, COUPP

- Superheated droplet detector. Insensitive to minimum ionizing radioactive background at operating temperature.
- PICASSO Currently Operational in existing SNO lab. Next phase will need SNOLAB space. COUPP has requested space for 60 kg detector
 Will measure Spin Dependent and Independent cross-sections.

Solid State: SuperCDMS

- State of the art Ge crystals with ionization and phonon readout.
- Currently operational in Soudan. Next phase will benefit from SNOLAB depth to reach desired sensitivity.
 - Primary sensitivity for Spin Independent cross-section.

Dark Matter Search at SNOLAB with Liquid Argon

CDMS Cryogenic Ge detectors: Measure Temperature and Ionization

Physics Reach:

Spin-Independent Interactions

PICASSO detectors: Spin-dependent Interactions

- Super heated C_4F_{10} droplets
 - 200um,

.

- held in matrix in polymerized gel
- act as individual bubble chambers
- When MIP deposits energy
 - F¹⁹ recoils: Large sensitivity
 - Superheated liquid vaporizes forming small bubbles along MIP's track
 - Bubbles grow, turning entire C_4F_{10} droplet to vapour
 - resulting acoustic signal registered by piezo electric sensors
 - Demonstrated ability to discriminate between WIMP recoils and alpha background radioactivity

0.0

1000.0

2000.0

3000.0

. 15

PICASSO detector status

Now Complete

- 32 detectors, 9 piezos each
- total active mass of 2248.6g
- 1795.1g of Freon mass
- Temperature & Pressure control system
- 40 hr data taking
- 15hr recompression

COUPP

Using a bubble chamber for WIMP detection

- "COUPP" = Chicagoland Observatory for Underground Particle Physics:
 - University of Chicago (Juan Collar, Spokesman)
 - Fermi National Accelerator Laboratory
 - Indiana University of South Bend
- Revives the reliable technology of bubble chambers for the pursuit of dark matter
- The detector is extraordinarily insensitive to electron recoil events
- Technology can be extrapolated to very large detector masses

Uses CF3I to obtain sensitivity to spin dependent and independent interactions

COUPP-60 Projected Limits

If fluid purity is improved and acoustic discrimination works, then 0.01 events/kg-day is quite achievable at SNOLAB

H elium A nd L ead O bservatory

Pb: Most sensitivity to electron neutrinos. ~ 50 events for SN at center of Galaxy.

HALO: A lead detector for supernova neutrinos in SNOLAB

HALO-1: 80 tons of existing Pb & SNO Neutron Detector Array

NEUTRINO OSCILLATIONS 2009

Maltoni et al, NJP 6 (2004) 122

Schwetz et al, NJP 10 (2008) 113011

STATUS OF THETA13 Schwetz et al NJPhys.10:113011,2008

New SNO analysis soon with lower threshold, smaller uncertainties on CC/NC so $sin^2\theta_{12}$. Hence also $sin^2\theta_{13}$

Talks by N. de Barros, A. Hallin

With lower threshold: CC events(electron v) up by 20% NC events (all active v) up by 70%

Systematic uncertainties better defined so overall accuracy for CC/NC much better

CONCLUSIONS

- SNO analysis is nearly complete and new more accurate results will be submitted for publication very soon.
- SNOLAB construction is complete and major areas are clean and ready for use.

• WE ARE WELCOMING THE WORLD FOR NEXT GENERATION EXPERIMENTS REQUIRING THE LOWEST COSMIC RAY BACKGROUNDS AND ULTRA-CLEAN CONDITIONS.