Quark-lepton complementarity in an S_{4} Pati Salam inspired scenario

Based on work in progress with Federica Bazzocchi and Luca Merlo, hep-ph/0910.xxxx

Reinier de Adelhart Toorop, Nikhef, Amsterdam

Outline

(1) Introduction: family physics
(2) TriBiMaximal versus BiMaximal mixing
(3) The model
(4) Results and Conclusions

Family physics

- Family physics aims to explain the apparent structure in the fermion mass sector
- Hierarchical masses
- Quarks: moderate Cabibbo-mixing - Leptons: strong mixing

Family physics

- Family physics aims to explain the apparent structure in the fermion mass sector
- Hierarchical masses
- Quarks: moderate Cabibbo-mixing
- Leptons: strong mixing

Family physics

- Family physics aims to explain the apparent structure in the fermion mass sector
- Hierarchical masses
- Quarks: moderate Cabibbo-mixing
- Leptons: strong mixing

$$
\begin{gathered}
\left|\left(V_{C K M}\right)_{i j}\right|= \\
\left(\begin{array}{ccc}
0.97 & 0.23 & 0.0039 \\
0.23 & 1.0 & 0.041 \\
0.0081 & 0.038 & 1 ?
\end{array}\right)
\end{gathered}
$$

Family physics

- Family physics aims to explain the apparent structure in the fermion mass sector
- Hierarchical masses
- Quarks: moderate Cabibbo-mixing
- Leptons: strong mixing

$$
\begin{gathered}
\left|\left(U_{P M N S}\right)_{i j}\right|= \\
\left(\begin{array}{ccc}
0.81 & 0.56 & <0.22 \\
0.39 & 0.59 & 0.68 \\
0.38 & 0.55 & 0.70
\end{array}\right)
\end{gathered}
$$

Family physics

- We charge the families under a symmetry group.
- To make the Lagrangian invariant, we need to add Higgs-like fields 'flavons'.
- Structure in the VEVs of the flavons leads to structure in the fermion masses. A very good introduction: G. Altarelli, Models of neutrino masses and mixings; hep-ph/0611117

Family Physics and Grand Unification

- Family symmetries unify the three families.
- Grand Unified Theories unify
- The gauge couplings
- The SM particles in fewer representations

Family Physics and Grand Unification

- Family symmetries unify the three families.
- Grand Unified Theories unify
- The gauge couplings
- The SM particles in fewer representations

Family Physics and Grand Unification

- Family symmetries unify the three families.
- Grand Unified Theories unify
- The gauge couplings
- The SM particles in fewer representations

Family Physics and Grand Unification

- Family symmetries unify the three families.
- Grand Unified Theories unify
- The gauge couplings
- The SM particles in fewer representations

$\left[\left(\begin{array}{lll}u_{R} & u_{G} & u_{B} \\ d_{R} & d_{G} & d_{B}\end{array}\right)+\left(\begin{array}{llll}u_{R}^{c} & u_{G}^{c} & u_{B}^{c}\end{array}\right)+\left(\begin{array}{lll}d_{R}^{c} & d_{G}^{c} & d_{B}^{c}\end{array}\right)+\binom{\nu}{e}+\left(e^{c}\right)+\left(\nu^{c}\right)\right]_{\mathrm{SM}} \rightarrow$
$\left.\left[\begin{array}{lllllllllllllll}\left(u_{R}\right. & u_{G} & u_{B} & d_{R} & d_{G} & d_{B} & u_{R}^{c} & u_{G}^{c} & u_{B}^{c} & d_{R}^{c} & d_{G}^{c} & d_{B}^{c} & \nu & e & e^{c}\end{array} \nu^{c}\right) ~\right]_{\mathrm{SO}(10)}$

Family Physics and Grand Unification

- Family symmetries unify the three families.
- Grand Unified Theories unify
- The gauge couplings
- The SM particles in fewer representations
- We like to build models that combine Family Physics and Grand Unification.

Pati-Salam

- We use Pati and Salam's $S U(4)_{c} \times S U(2)_{L} \times S U(2)_{R}$
- Gauge: not quite unifying
- All SM particles in two representations.
- The type II seesaw can be dominant

This prevents unwanted correlations between quarks and neutrinos

Pati-Salam

- We use Pati and Salam's $S U(4)_{c} \times S U(2)_{L} \times S U(2)_{R}$
- Gauge: not quite unifying
- All SM particles in two representations.

This prevents unwanted correlations between quarks and neutrinos

$$
\left.\left[\left(\begin{array}{ccc}
u_{R} & u_{G} & u_{B} \\
u_{R} & d_{G} & d_{B}
\end{array}\right) \quad\binom{\nu}{e}\right] \&\left[\begin{array}{ccc}
\left(u_{R}^{c}\right. & u_{G}^{c} & \left.u_{B}^{c}\right) \\
\left(d_{R}^{c}\right. & d_{G}^{c} & d_{B}^{c}
\end{array}\right)\left(\nu^{c}\right)\right]
$$

Pati-Salam

- We use Pati and Salam's $S U(4)_{c} \times S U(2)_{L} \times S U(2)_{R}$
- Gauge: not quite unifying
- All SM particles in two representations.
- The type II seesaw can be dominant

This prevents unwanted correlations between quarks and neutrinos

$$
\begin{gathered}
m_{\nu}^{I}=-m_{\mathrm{Dir}}^{T} \frac{1}{M_{R R}} m_{D i r} \propto M_{R}^{-1} \\
m_{\nu}^{I I}=M_{L L} \propto M_{3 L}^{-1}
\end{gathered}
$$

TriBiMaximal mixing

- Many models use tribimaximal mixing to model the neutrino mixing P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530 (2002) 167

$$
\begin{gathered}
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\theta_{12}=35^{\circ}, \quad \theta_{13}=0^{\circ}, \quad \theta_{23}=45^{\circ} .
\end{gathered}
$$

- This describes the data really well ...

Data

TBM Prediction

- TBM mixing might describe the neutrino data a bit too well.
- Most models describe the quark mixing poorly at Leading Order*.
- The Cabibbo angle arises only via NLO effects.
- Often these NLO effects influence the PMNS as well.
* LO is defined as having the lowest number of flavons possible; NLO has one extra flavon

TBM LO

BiMaximal mixing

- An alternative is BiMaximal mixing
- At leading order, two angles are maximal

$$
U_{\mathrm{BM}}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

- And we can write $U_{\mathrm{BM}}=$ as the product of two maximal rotations

$$
U_{\mathrm{BM}}=R_{23}\left(-\frac{\pi}{4}\right) \times R_{12}\left(\frac{\pi}{4}\right)
$$

- The leading order does not explain the data well.
- Via quark lepton complementarity at NLO it might.
G. Altarelli, F. Feruglio and L. Merlo, JHEP 0905 (2009) 020

Rotations at leading order

- BiMaximal mixing models have at leading order
- $V_{C K M}=V_{u}^{\dagger} V_{d}=\mathbb{1}$,
- $U_{P M N S}=V_{e}^{\dagger} V_{\nu}=R_{23}\left(-\frac{\pi}{4}\right) R_{12}\left(\frac{\pi}{4}\right)$
- This can be achieved if
- $M_{\nu}^{I I}$ is diagonalized by $V=R_{12}\left(\frac{\pi}{4}\right)$
- And $M_{e} M_{e}^{\dagger}, M_{d} M_{d}^{\dagger}$ and $M_{u} M_{u}^{\dagger}$ by $V_{e, d, u}=R_{23}\left(\frac{\pi}{4}\right)$

Matter content of the model

- How to get such mass matrices?
\rightarrow Model details
- Our family group is the discrete group S_{4}
- We put the lefthanded PS multiplets F_{L} in a 3_{a} of S_{4}
- We put the righthanded PS multiplets $F_{1,2,3}^{c}$ in $1_{b}, 1_{b}$ and 1_{a} of S_{4}
- We introduce two flavons (σ, χ) in the neutrino sector
- And two $\left(\varphi, \varphi^{\prime}\right)$ for the charged particles

Neutrinos

- In the neutrino sector we introduce a singlet σ and a triplet χ

$$
\chi \propto\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

- This gives the type II seesaw contributions

$$
F_{L} F_{L} \rightarrow\left(\begin{array}{ccc}
u_{1} & 0 & 0 \\
0 & u_{1} & 0 \\
0 & 0 & u_{1}
\end{array}\right), \quad F_{L} F_{L} \chi \rightarrow\left(\begin{array}{ccc}
0 & u_{2} & 0 \\
u_{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- That is indeed diagonalized by $V=R_{12}\left(\frac{\pi}{4}\right)$

Charged particles

- For the charged particles we introduce a 3_{a} triplet φ and a 3_{b} triplet φ^{\prime}

$$
\varphi \propto\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \varphi^{\prime} \propto\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

- This leads to masses

$$
F_{L} F_{3}^{c} \varphi \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & y \\
0 & 0 & y
\end{array}\right), \quad F_{L} F_{2}^{c} \varphi^{\prime} \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & x & 0 \\
0 & -x & 0
\end{array}\right)
$$

- The square is indeed diagonalized by $V=R_{23}\left(\frac{\pi}{4}\right)$

$$
M M^{\dagger}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{2}+x^{2} & y^{2}-x^{2} \\
0 & y^{2}-x^{2} & y^{2}+x^{2}
\end{array}\right)
$$

Rotations at leading order

- We indeed have at Leading order.
- $M_{\nu}^{I I}$ is diagonalized by $V=R_{12}\left(\frac{\pi}{4}\right)$
- And $M_{e} M_{e}^{\dagger}, M_{d} M_{d}^{\dagger}$ and $M_{u} M_{u}^{\dagger}$ by $V_{e, d, u}=R_{23}\left(\frac{\pi}{4}\right)$
- So we indeed reproduce BiMaximal mixing.
- $V_{C K M}=V_{u}^{\dagger} V_{d}=\mathbb{1}$,
- $U_{P M N S}=V_{e}^{\dagger} V_{\nu}=R_{23}\left(-\frac{\pi}{4}\right) R_{12}\left(\frac{\pi}{4}\right)$

Next-to-Leading Order

- At NLO $M_{\nu}^{I I}$ is still diagonalized by $V=R_{12}\left(\frac{\pi}{4}\right)$

$$
M_{\nu}^{I I}=\left(\begin{array}{ccc}
u_{1} & u_{2} \lambda & 0 \\
u_{2} \lambda & u_{1} & 0 \\
0 & 0 & u_{1}+u_{3} \lambda^{2}
\end{array}\right) \quad \lambda \approx 0.2
$$

- The charged particle mass matrices now read

$$
M_{x}=\left(\begin{array}{ccc}
0 & \tilde{x} \lambda & \tilde{y} \lambda \\
0 & x & y \\
0 & -x & y
\end{array}\right)
$$

Next-to-Leading Order

- $M M^{\dagger}$-matrices are diagonalized by

$$
V_{x}=R_{23}\left(\frac{\pi}{4}\right) \times R_{13}(f \lambda) \times R_{12}\left(g_{x} \lambda\right),
$$

where $f=f_{u}=f_{d}=f_{e}$ and $g_{u} \neq g_{d}=g_{e}$ are $\mathcal{O}(1)$.

- The CKM matrix is

$$
V_{C K M}=V_{u}^{\dagger} V_{d}=R_{12}\left(\left(g_{d}-g_{u}\right) \lambda\right)
$$

- And the PMNS matrix is

$$
V_{P M N S}=V_{e}^{\dagger} V_{\nu}=R_{23}\left(-\frac{\pi}{4}\right) \times R_{13}(\tilde{f} \lambda) \times R_{12}\left(\frac{\pi}{4}-\tilde{g}_{e} \lambda\right)
$$

Some Results

- The angle θ_{13} is predicted to be rather large and can be measured in near-future experiments.
- The neutrino masses are near-degenerate
- Neutrinoless double beta decay is in the sensitive area of near-future experiments

$$
\begin{aligned}
\theta_{13}^{\mathrm{PMNS}} & =\tilde{f} \lambda & \lesssim 0.18 \\
\theta_{12}^{\mathrm{CKM}} & =\left(g_{d}-g_{u}\right) \lambda & \approx 0.23 \\
\theta_{12}^{\mathrm{PMNS}}-\frac{\pi}{4} & =-\tilde{g}_{e} \lambda & \approx-0.17
\end{aligned}
$$

δ

Some Results

- The angle θ_{13} is predicted to be rather large and can be measured in near-future experiments.
- The neutrino masses are near-degenerate
- Neutrinoless double beta decay is in the sensitive area of near-future experiments

$$
M_{\nu}^{I I}=\left(\begin{array}{ccc}
u_{1} & u_{2} \lambda & 0 \\
u_{2} \lambda & u_{1} & 0 \\
0 & 0 & u_{1}+u_{3} \lambda^{2}
\end{array}\right)
$$

Some Results

- The angle θ_{13} is predicted to be rather large and can be measured in near-future experiments.
- The neutrino masses are near-degenerate
- Neutrinoless double beta decay is in the sensitive area of near-future experiments

Conclusions

- Family Physics and Grand Unification both give a unified descriptions of the SM fermions.
- TriBiMaximal mixing and BiMaximal mixing patterns are both interesting.
- We described a Pati-Salam $\times S_{4}$ model - θ_{13} and $0 \nu \beta \beta$ are expected to be measured soon.

Conclusions

- Family Physics and Grand Unification both give a unified descriptions of the SM fermions.
- TriBiMaximal mixing and BiMaximal mixing patterns are both interesting.
- We described a Pati-Salam $\times S_{4}$ model - θ_{13} and $0 \nu \beta \beta$ are expected to be measured soon.

Conclusions

- Family Physics and Grand Unification both give a unified descriptions of the SM fermions.
- TriBiMaximal mixing and BiMaximal mixing patterns are both interesting.
- We described a Pati-Salam $\times S_{4}$ model
- θ_{13} and $0 \nu \beta \beta$ are expected to be measured soon.

