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Effect on the structure formation
       Neutrinos are hot dark matter

1. Thermal equilibrium: free streaming

    damps fluctuations to this scale
    Modify the power spectrum P(k) at smaller scales

2. Gravitational potential decays plasma
    Modify geometry & Integrated Sachs Wolfe effect
                 Modify the CMB harmonic pattern
                  constraints from ‘CMB alone’

! ∼ ct{T∼mν}



Power spectrum : 

               NB: They are the mass correlation

Effect from nu free streaming: perturbations damps

  At smaller scales (larger k) damping is controlled by
                

Either use 
      CMB as the pivot,  or P(k) in wide range of k: 0.01-0.2

λ < 110 Mpc(mν/1eV)−1 k > 0.03 Mpc−1

Ων (i.e.
∑

mν)

P (k) =
∫

d3xξ(x) exp(ikx)

ξ(|x − x′|) = 〈δρ(x)δρ(x′)〉 ρ̄−2



3 deg massive

1 massive

1 massive 3 massless

power spectrum P(k) ∑
mν = 1eV



Sloan Digital Sky Survey:  2000-2008+
       
       Mapping the Universe in the North
        where not obscured by our Galaxy  (1/2 of N. sky)
  
   Design+instrumentation               1992-2000 
           Unique, yet most difficult feature: 
                wide field of view:  50x ordinary
   First Light  1999 (photom)+2000 (spectro)
        Output just as designed from the 1st night
   Survey operation                           2000-2005
         95% of time observing throughout 5 yr
   Survey extended (SDSS-II)          2005-2008 Ended!
   



photometry 250M objects (galaxies+stars)
spectroscopy (redshift) 1M galaxies+quasars 
        cf. CfA survey (approx 10years -1985)   2401 galaxies
     z  to  0.2  (ordinary galaxies)  0.4 (LRG)
              5.4  (quasars)
    produced omnipurpose data base

Example of the use (originally aimed)
     Two point correlation function of galaxies
            z=0 fiducial of the universe
            large-scale clustering (e.g., dark matter property)
            cosmological parameters
                     if they match with CMB at z=1100  



SDSS:
Tegmark et al. 2004

pre SDSS/2dFGRS



SDSS: Tegmark et al. 04

SDSS: Tegmark et al. 06

r−1.8

P (k)
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SDSS: Percival et al. 07



“Biasing”
  Type of galaxies: morphologies

  Some ‘practical problems’ in estimating P(k) at a large k
            problem of the algorism: shouldn’t be difficult

  Attempts to estimate the halo abundance
     SDSS collaboration: Reid et al. 09

Use of Lyman alpha clouds: small scales
     Can go to smaller scales, but severer model dependences
     Difficult to unfold P(k) : problematic
 

∑
mν < 0.62eV (95%CL)



SDSS: Reid et al. 2009
usng SDSS full data

∑
mν < 0.62 eV at 95%C.L.

halo power spectrum

SDSS: Reid et al. 09



ell_1:     age
H_1              

H_2:   Omega_b
 H_3:   Omega_m

 CMB harmonics   
Parameters: Ωm,Ωb,H0, ns, τ, σ8

“Reduced CMB Observables”



CMB:  traces mass more faithfully, physics is simple

   CMB indicators     
                                                       WMAP5 errors
                                                        +/- 1        (0.5%)      
                                                        +/- 0.35   (7%)
                                                        +/- 0.005 (1%)
                                                         +/- 0.01  (2%)

   Decay of gravitational potential
            enhances
   Integrated Sachs Wolfe effect modified    

!1
H1 = (∆T!1/∆T10)2

H2 = (∆T!2/∆T!1)
2

H3 = (∆T!3/∆T!1)
2

Hu, MF, Zaldarriaga, Tegmark 2001

Ichikawa, MF, Kawasaki 05
Shiraishi, MF +  09

r < rfree stream

C! at ! > !nr

lm = lA(m− φm)



Do we understand physics of massive neutrino well?
  Can find a ‘mock’ massless neutrino theory
     Classify the effects and
     Replace        
                                                       
                                                                       
                                                                                                            
Find the response to               WMAP-5             WMAPmν

∑
mν ≤ 1.2eV 1.5eV

Ichikawa, MF, Kawasaki 05
Shiraishi, MF +  09

ωm = ωm + ων(NR)

Nν

h (to account for Λ change)



mock th.



change can be
absorbed into H_0

1 eV



95%

95%

limits: CMB harmonics alonemν
Shiraishi, MF 09





n_s tilting



3+1massive

2+1massive

3 deg mass

Shiraishi, MF 09CMB harmonics only

NB: ‘singular soln’s are
excluded if P(k) is used



H0



Conclusions:

   Constraints on the mass of neutrinos
       Use of the power spectrum 
             Attempt: halo distribution 
       Use of CMB alone
       Lower Hubble constant:
              + Ext. data to constrain 
   Special case: 3 massless + 1 massive neutrinos  (Angus 09)
       massive neutrino behaves as quasi-CDM: OK with CMB, 
                but excluded by P(k) unless gravity largely modified               
   Future:
       Verification of the halo model
       Weak lensing for B mode polarisation (Kaplinghat et al. 03)
       Too reach                          would not be too unrealistic

∑
mν < 0.62eV (95%CL)

∑
mν < 1.2eV (95%CL)

∑
mνi ∼ 0.05eV

H0 = 70− 72 → 62− 72
H0

∑
mν < 0.7eV





A





H_1 takes a peak at                          per numν = 0.5eV
Shiraishi, MF 09



Flat
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WMAP-3: Spergel et al. 2006


