

#### INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 31st Course

Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice-Sicily: 16 - 24 September 2009



# **Cosmic rays at the highest energies**



Jörg R. Hörandel for the Pierre Auger Collaboration Radboud University Nijmegen, The Netherlands



http://particle.astro.kun.nl



J. Blümer, R. Engel, JRH, Progr. Part. Nucl. Phys. 63 (2009) 293





#### **Possible sources of extragalactic cosmic rays**

#### **Bottom up models**



#### → Multi Messenger Approach

Neutrino astronomy km<sup>3</sup> net lce Cube Proton astronomy Pierre Auger (full sky)

TeV γ-ray astronomy HESS, MAGIC, CTA



**B**[μG] L[pc] > 2 E[PeV]/(Zβ)







## **The Pierre Auger Observatory**







#### Pierre Auger Observatory 3000 km<sup>2</sup>

4 telescope buildings

6 telescopes each

## Spring 2008:

water Cherenkov detector array completed 1600 tanks operating



# Air shower registered with water Cherenkov detectors









## **The Pierre Auger Collaboration**

| Czech Republic | Argentina                                                         |
|----------------|-------------------------------------------------------------------|
| France         | Australia                                                         |
| Germany        | Brasil                                                            |
| Italy          | Bolivia*                                                          |
| Netherlands    | Mexico                                                            |
| Poland         | USA                                                               |
| Portugal       | Vietnam*                                                          |
| Slovenia       |                                                                   |
| Spain          | *Associate Countries                                              |
| United Kingdom | ~300 PhD scientists from<br>~ 70 Institutions and<br>17 Countries |



**Aim:** To measure properties of UHECR with unprecedented statistics and precision

## **A Hybrid Event**



20 May 2007 E ~ 10<sup>19</sup> eV



F. Schüssler et al., ICRC 2009



F. Schüssler et al., ICRC 2009





Proton QGSJET Fe QGSJETII03 Proton SIBYLL2 Fe SIBYLL2.1 Auger – ICRC20 XAsymMax <∆>

## Limit on $\gamma$ flux



## **Neutrino Detection in Auger**



#### **Limit on** $\tau$ neutrino flux



## Arrival directions of highest energy cosmic rays

Best correlation between arrival directions and positions of AGNs for E>5.7 10<sup>19</sup> eV - d<75 Mpc -  $\Theta$ <3.1°



#### The Birth of Charged-Particle Astronomy

J. Abraham et al., Science 318 (2007) 938

MAAAS

#### **Evolution of correlation with time**

$$P = \sum_{j=k}^{N} \begin{pmatrix} N \\ j \end{pmatrix} p_{\rm iso}{}^{j} (1 - p_{\rm iso})^{N-j}$$

probability for correlations in isotropic flux



Fig. 1. Monitoring the correlation signal. Left: The sequential analysis of cosmic rays with energy greater than 55 EeV arriving after 27 May, 2006. The likelihood ratio  $\log_{10} R$  (see Eqn (2)) for the data is plotted in black circles. Events that arrive within  $\psi_{\text{max}} = 3.1^{\circ}$  of an AGN with maximum redshift  $z_{\text{max}} = 0.018$  result in an up-tick of this line. Values above the area shaded in blue have less than 1% chance probability to arise from an isotropic distribution ( $p_{\text{iso}} = 0.21$ ). Right: The most likely value of the binomial parameter  $p_{\text{data}} = k/N$  is plotted with black circles as a function of time. The  $1\sigma$  and  $2\sigma$  uncertainties in the observed value are shaded. The horizontal dashed line shows the isotropic value  $p_{\text{iso}} = 0.21$ . The current estimate of the signal is  $0.38 \pm 0.07$ . In both plots events to the left of the dashed vertical line correspond to period II of Table I and those to the right, collected after [1], correspond to period III.

J.D. Hague et al., ICRC 2009

## **Angular separation**



Fig. 2. The distribution of angular separations between the 58 events with E > 55 EeV and the closest AGN in the VCV catalog within 75 Mpc. *Left:* The cumulative number of events as a function of angular distance. The 68% the confidence intervals for the isotropic expectation is shaded blue. *Right:* The histogram of events as a function of angular distance. The 13 events with galactic latitudes  $|b| < 12^{\circ}$  are shown with hatching. The average isotropic expectation is shaded brown.



Fig. 3. Left: The cumulative number of events with  $E \ge 55$  EeV as a function of angular distance from Cen A. The average isotropic expectation with approximate 68% confidence intervals is shaded blue. *Right:* The histogram of events as a function of angular distance from Cen A. The average isotropic expectation is shaded brown.

#### J.D. Hague et al., ICRC 2009

## **Pierre Auger Experiment – Northern Observatory**

#### **Exposure of Auger South**



for anisotropy studies full sky coverage desired



Lamar, Colorado, USA

#### 20000 km<sup>2</sup> array water Cherenkov detectors & fluorescence telescope systems







#### INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 31st Course

Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice-Sicily: 16 - 24 September 2009



# **Cosmic rays at the highest energies**

Jörg R. Hörandel for the Pierre Auger Collaboration Radboud University Nijmegen, The Netherlands

http://particle.astro.kun.nl