Neutrinos in Cosmology, Astro, Particle & Nuclear Physics 16–24 September 2009, Erice, Sicily

Physics Opportunities with Supernova Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München

Newborn Neutron Star

Gravitational binding energy $E_{\rm b} \approx 3 \times 10^{53} \text{ erg} \approx 17\% \text{ M}_{\text{SUN}} \text{ c}^2$

This shows up as99%Neutrinos1%Kinetic energy of explosion
(1% of this into cosmic rays)0.01%Photons, outshine host galaxy

Neutrino luminosity $L_{\nu} \approx 3 \times 10^{53} \text{ erg } / 3 \text{ sec}$ $\approx 3 \times 10^{19} L_{SUN}$ While it lasts, outshines the entire visible universe

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

Diffuse Supernova Neutrino Background (DSNB)

Supernova rate approximately 1 SN / $10^{10} L_{Sun,B}$ / 100 years $L_{sun,B} = 0.54 L_{sun} = 2 \times 10^{33} \text{ erg/s}$ $E_v \sim 3 \times 10^{53} \text{ erg per core-collapse}$

Core-collapse neutrino luminosity of typical galaxy comparable to photon luminosity (from nuclear burning)

Core-collapse rate somewhat larger in the past. Estimated present-day \overline{v}_e flux ~ 10 cm⁻² s⁻¹

Pushing the boundaries of neutrino astronomy to cosmological distances

FIG. 1: Spectra of low-energy $\bar{\nu}_e + p \rightarrow e^+ + n$ coincidence events and the sub-Čerenkov muon background. We assume full efficiencies, and include energy resolution and neutrino oscillations. Singles rates (not shown) are efficiently suppressed.

Beacom & Vagins, hep-ph/0309300 [Phys. Rev. Lett., 93:171101, 2004]

Realistic DSNB Estimate

FIG. 4: DSNB flux spectrum for emitted neutrino spectra as labeled. For each spectrum, two curves are plotted representing the full range of uncertainties due to astrophysical inputs (the fiducial prediction lies in between). The shadings indicate backgrounds, with origins as labeled. Decays of invisible muons and spallation products would be reduced in a gadolinium-enhanced SK, opening the energy region 10 MeV and above to a rate-limited DSNB search; see Fig. 5.

FIG. 5: DSNB event rates at SK (flux spectra weighted with the detection cross section) against positron energy. Note the linear axis. We hatch in the 2003 upper limit by the Super-Kamiokande Collaboration, < 2 events $(22.5 \text{ kton yr})^{-1}$ in the energy range 18–26 MeV. The limit applies to all spectra (see text). In a gadolinium-enhanced SK, decays of invisible muon and spallation products would be reduced, opening up the energy range $\gtrsim 10$ MeV for DSNB search (unshaded region).

Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Sanduleak -69 202

Tarantula Nebula

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak –69 202

Supernova 1987A 23 February 1987

Neutrino Signal of Supernova 1987A

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

2002 Physics Nobel Prize for Neutrino Astronomy

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

The Possible Role of Neutrinos in Stellar Evolution

It can be considered at present as definitely established that the energy production in stars is caused by various types of thermonuclear reactions taking place in their interior. Since these reaction chains usually contain the processes of β -disintegration accompanied by the emission of high speed neutrinos, and since the neutrinos can pass almost without difficulty through the body of the star, we must assume that a certain part of the total energy produced escapes into interstellar space without being noticed as the actual thermal radiation of the star. Thus, for example, in the case of the carbon-nitrogen cycle in the sun, about 7 percent of the energy produced is lost in the form of neutrino radiation. However, since, in such reaction chains, the energy taken away by neutrinos represents a definite fraction of the total energy liberation, these losses are of but secondary importance for the problem of stellar equilibrium and evolution.

We want to indicate here that the situation becomes entirely different in cases where, as the result of the pro-

More detailed calculations on this collapse process are now in progress.

The George Washington University.

G. GAMOW

Washington, D. C.,

M. SCHOENBERG*

University of São Paulo. São Paulo, Brazil. November 23, 1940.

* Fellow of the Guggenheim Memorial Foundation. Now in Washington, D. C.

Large Detectors for Supernova Neutrinos

Current and Near-Future SN Neutrino Detectors

Detector	Туре	Location	Mass (kton)	Events @ 8 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Ice	South Pole	0.4/PMT	1 million	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini-BOONE	Scintillator	USA	0.7	200	Running
HALO	Lead	Canada	0.076	85	Under construction
Icarus	Liquid argon	Italy	0.6	230	Almost ready
NOvA	Scintillator	USA	15	3000	Construction started
SNO+	Scintillator	Canada	1	300	Funded

Adapted from Kate Scholberg, TAUP 2009

Super-Kamiokande Neutrino Detector

Simulated Supernova Burst in Super-Kamiokande

Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholberg's group at Duke University) http://snews.bnl.gov/snmovie.html

IceCube Neutrino Telescope at the South Pole

IceCube as a Supernova Neutrino Detector

Galactic Supernova Distance Distribution

Average distance 10.7 kpc, rms dispersion 4.9 kpc (11.9 kpc and 6.0 kpc for SN la distribution)

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

The Red Supergiant Betelgeuse (Alpha Orionis)

First resolved image of a star other than Sun Distance (Hipparcos) 130 pc (425 lyr)

If Betelgeuse goes Supernova:

- 6 × 10⁷ neutrino events in Super-Kamiokande
- 2.4×10³ neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

Next Generation Large-Scale Detector Concepts

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

Galactic Supernova Rate

Core-Collapse SN Rate in the Milky Way

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astroph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

Observed SNe in the Local Universe (Past Decade)

High and Low Supernova Rates in Nearby Galaxies

M31 (Andromeda) D = 780 kpc

Last Observed Supernova: 1885A

NGC 6946 D = (5.5 ± 1) Mpc

Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

SuperNova Early Warning System (SNEWS)

Probing Supernova Physics

Delayed Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Standing Accretion Shock Instability (SASI)

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

Luminosity Variation Detectable in Neutrinos?

Marek, Janka & Müller, arXiv:0808.4136

Fourier Transform of Luminosity Variation

Neutrino Mass and Resolution of Time Variations

Signal dispersion for Next Nearby SN $\Delta t = 5.1 \text{ ms} \left(\frac{D}{10 \text{ kpc}}\right) \left(\frac{10 \text{ MeV}}{E_{\nu}}\right)^2 \left(\frac{m_{\nu}}{1 \text{ eV}}\right)^2$

- IceCube binning of data: 1.64 ms in each OM
- Laboratory neutrino mass limit: 2.2 eV
- Cosmological limit $\Sigma m_v < 0.6 \text{ eV}$, so individual mass limit 0.2 eV
- KATRIN sensitivity roughly 0.2 eV

For SN signal interpretation of fast time variations, it is important to have the cosmological limit and future KATRIN measurement/limit

Supernova neutrino aficionados are new customers for KATRIN results!

Gravitational Waves from Core-Collapse Supernovae

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

Neutrino Emission Around Bounce Time

Millisecond Bounce Time Reconstruction

Super-Kamiokande

IceCube

- Emission model adapted to measured SN 1987A data
- "Pessimistic distance" of 20 kpc
- Determine bounce time to within a few tens of milliseconds

FIG. 1: Typical Monte Carlo realization (red histogram) and reconstructed fit (blue line) for the benchmark case discussed in the text for a SN at 10 kpc.

Pagliaroli, Vissani, Coccia & Fulgione arXiv:0903.1191

Halzen & Raffelt arXiv:0908.2317

Do Neutrinos Gravitate?

Neutrinos arrive a few hours earlier than photons → Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h

Shapiro time delay for particles moving in a gravitational potential $\Delta t_{Shapiro} = -2\int_{A}^{B} U[r(t)] dt \approx 1-5$ months

Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Equal within ~ $1 - 4 \times 10^{-3}$

- Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point
- Cosmological limits $\Delta N_v \lesssim 1$ much worse test of neutrino gravitation
- Provides limits on parameters of certain non-GR theories of gravitation

Particle Physics Bounds

The Energy-Loss Argument

Late-time signal most sensitive observable

New Long-Term Cooling Calculations

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Neutrino Flavor Oscillations

Neutrino Emission Around Bounce Time

Flavor Dependence of Neutrino Emission

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Flavor-Dependent Neutrino Fluxes vs. Equation of State

Kitaura, Janka & Hillebrandt, "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae", astro-ph/0512065

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

Level-Crossing Diagram in a SN Envelope

Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/9907423

Spectra Emerging from a Supernova

Primary fluxes	$ \begin{array}{lll} F_e^0 & \mbox{for } \nu_e \\ F_{\overline{e}}^0 & \mbox{for } \overline{\nu}_e \\ F_{X}^0 & \mbox{for } \nu_{\mu}, \overline{\nu}_{\mu}, \nu_{\tau}, \overline{\nu}_{\tau} \end{array} $
After leaving the supernova envelope, the fluxes are partially swapped	$\begin{split} F_{e}^{0} &= p F_{e}^{0} + (1-p) F_{\chi}^{0} \\ F_{\overline{e}}^{0} &= \overline{p} F_{\overline{e}}^{0} + (1-\overline{p}) F_{\chi}^{0} \\ \frac{1}{4} \sum F_{\chi} &= \frac{2+p+\overline{p}}{4} F_{\chi}^{0} + \frac{1-p}{4} F_{e}^{0} + \frac{1-\overline{p}}{4} F_{\overline{e}}^{0} \end{split}$
	Survival probability

Caso	Mass ordering	$sin^2(2\Theta)$	Survival probability		
Case		5117(20 ₁₃)	p (for v _e)	\overline{p} (for \overline{v}_e)	
A	Normal	> 10-3	0	cos ² (@ ₁₂)	
В	Inverted		sin ² (@ ₁₂)	0	
С	Any	≲ 10 ⁻⁵	sin ² (@ ₁₂)	$\cos^2(\Theta_{12})$	

Collective Effects in Neutrino Flavor Oscillations

Collapsed supernova core or accretion torus of merging neutron stars:

- Neutrino flux very dense: Up to 10^{35} cm⁻³
- Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency
- Large "matter effect" of neutrinos on each other
- Non-linear oscillation effects

- Assume 80% anti-neutrinos
- Vacuum oscillation frequency ω = 0.3 km⁻¹
- Neutrino-neutrino interaction energy at nu sphere (r = 10 km) μ = 0.3×10⁵ km⁻¹
- Falls off approximately as r⁻⁴ (geometric flux dilution and nus become more co-linear)

Collective SN Neutrino Oscillations since 2006

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

Duan, Fuller, Carlson & Qian, astro-ph/0608050, 0703776, arXiv:0707.0290, 0710.1271. Duan, Fuller & Qian, arXiv:0706.4293, 0801.1363, 0808.2046. Duan, Fuller & Carlson, arXiv:0803.3650. Duan & Kneller, arXiv:0904.0974. Hannestad, Raffelt, Sigl & Wong, astro-ph/0608695. Balantekin & Pehlivan, astro-ph/0607527. Balantekin, Gava & Volpe, arXiv:0710.3112. Gava & Volpe, arXiv:0807.3418. Gava, Kneller, Volpe & McLaughlin, arXiv:0902.0317. Raffelt & Sigl, hep-ph/0701182. Raffelt & Smirnov, arXiv:0705.1830, 0709.4641. Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv:0706.2498, 0712.1137. Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv:0807.0659. Raffelt, arXiv:0810.1407. Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998. Fogli, Lisi, Marrone & Tamborra, arXiv:0812.3031, 0907.5115. Lunardini, Müller & Janka, arXiv:0712.3000. Dasgupta & Dighe, arXiv:0712.3798. Dasgupta, Dighe & Mirizzi, arXiv:0802.1481. Dasgupta, Dighe, Mirizzi & Raffelt, arXiv:0801.1660, 0805.3300. Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542. Sawyer, arXiv:0803.4319. Chakraborty, Choubey, Dasgupta & Kar, arXiv:0805.3131. Blennow, Mirizzi & Serpico, arXiv:0810.2297. Wei Liao, arXiv:0904.0075, 0904.2855.

General Equations of Motion

$$V \qquad i\partial_{t}\rho_{\overline{p}} = + \left[\frac{M^{2}}{2p}, \rho_{\overline{p}}\right] + \sqrt{2}G_{F}[L, \rho_{\overline{p}}] + \sqrt{2}G_{F}\int \frac{d^{3}\overline{q}}{(2\pi)^{3}}(1 - \cos\theta_{\overline{p}}\overline{q})[(\rho_{\overline{q}} - \overline{p}_{\overline{q}}), \rho_{\overline{p}}]$$

$$\overline{V} \qquad i\partial_{t}\overline{p}_{\overline{p}} = -\left[\frac{M^{2}}{2p}, \overline{p}_{\overline{p}}\right] + \sqrt{2}G_{F}[L, \overline{p}_{\overline{p}}] + \sqrt{2}G_{F}\int \frac{d^{3}\overline{q}}{(2\pi)^{3}}(1 - \cos\theta_{\overline{p}}\overline{q})[(\rho_{\overline{q}} - \overline{p}_{\overline{q}}), \overline{p}_{\overline{p}}]$$

$$\cdot \text{Vacuum oscillations} \\ \text{M is neutrino mass matrix} \\ \cdot \text{Note opposite sign between} \\ \text{neutrinos and antineutrinos} \end{aligned}$$

$$Usual matter effect with \\ \begin{pmatrix} n_{e} - n_{\overline{e}} & 0 & 0 \\ 0 & n_{\mu} - n_{\overline{\mu}} & 0 \\ 0 & 0 & n_{\tau} - n_{\overline{\tau}} \end{pmatrix}$$

Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

$$\omega_{OSC} = \frac{\Delta m^2}{2E} < \mu = \sqrt{2} \, G_F n_{\nu} \langle 1 - \cos \theta \rangle$$

Oscillations of Neutrinos plus Antineutrinos in a Box

Flavor Conversion in Toy Supernova

Spectral Split for Accretion Phase Example

Fogli et al., arXiv:0707.1998, 0808.0807

Multiple Spectral Splits (Cooling-Phase Example)

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Multiple Spectral Splits in the ω Variable

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Flavor Pendulum

Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 For movies see http://www.mppmu.mpg.de/supernova/multisplits

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16–24 September 2009, Erice, Sicily

Decreasing Neutrino Density

initial neutrino density Dighe, Dasgupta, Raffelt, Smirnov, arXiv:0904.3542 Dasgupta, Raffelt, Smirnov, arXiv:0904.3542 1 Spectrum Spectrum 0 0 -1 Neutrino density Neutrino density Swap factor Swap factor 0 0 0.5 1.5 0.5 1.5 0 2 0 2 Mode frequency w Mode frequency w

Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 For movies see http://www.mppmu.mpg.de/supernova/multisplits

Certain initial neutrino density

Four times smaller

Supernova Cooling-Phase Example

Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 For movies see http://www.mppmu.mpg.de/supernova/multisplits

Multiple Spectral Splits (Cooling-Phase Example)

Georg Raffelt, Max-Planck-Institut für Physik, München

Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16-24 September 2009, Erice, Sicily

Questions and Opportunities

Self-induced collective oscillations occur even for very small 13-mixing (instability!)

Observation of spectral split or swap indication can provide signature for mass hierarchy and nontrivial neutrino propagation dynamics

Do matter-density fluctuations have any realistic impact?

Theoretical understanding and role of "multi-angle effects" largely missing

Spectral Split (Accretion-Phase Example)

Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998

Distinguishing Mixing Scenarios

- Assuming "standard" flux spectra leading to a single split
- Probably generic for accretion phase

Adapted from Dighe, arXiv:0809.2977

Mass Hierarchy at Extremely Small Theta-13

Using Earth matter effects to diagnose transformations

Dasgupta, Dighe & Mirizzi, arXiv:0802.1481

Diagnosing Collective Transformations

Assuming the mass ordering is measured to be inverted in the lab, the presence or absence of Earth effects distinguishes between the presence or not of collective transformations

What exactly will be learnt from the neutrinos of the next nearby SN depends a lot on what exactly is observed

SN neutrinos are powerful astrophysical and particle-physics messengers