Hawai'i Anti-Neutrino Observatory (HANOHANO)

Stefanie N. Smith

Department of Physics and Astronomy, University of Hawaii

HANOHANO

- Hawaii Anti-Neutrino Observatory
- "distinctive", "glorious"
- 10 kton, liquid scintillator
- I MeV energy scale
- 3-5 km ocean depth

Geo-Neutrinos

- Radioactive decay v's, 3.3 MeV or less
- Radiogenic heating contributes to plate tectonics and geomagnetic field
- Won't speak to ⁴⁰K content

²³⁸ U \rightarrow ²⁰⁶Pb+8 ⁴He+6e⁻+6 $\overline{\nu}_{e}$ ²³² Th \rightarrow ²⁰⁸Pb+6 ⁴He+4e⁻+4 $\overline{\nu}_{e}$ ⁴⁰ K \rightarrow ⁴⁰Ca+e⁻+ $\overline{\nu}_{e}$

What's going on inside our planet?

- Seismic data gives density: inner/ outer mantle, inner/outer core
- Fractional U/Th in the crust is thought to be 100x that in the mantle, while the mass of the mantle is 100x the mass of the crust.
- Geo-reactor?
- Continental vs Oceanic

Where?

Stefanie Smith. University of Hawai'i at Manoa

Erice. 2009

Reactor Neutrino Background

 When trying to see geoneutrinos from the mantle (and/or core) reactors become background

HANOHANO Applications

- Geoneutrinos mapping the Uranium and Thorium content of the mantle (and core?)
- Reactor monitoring
- Measurements of mixing parameters:
 - Mass Hierarchy
 - Mixing angles
- Long baseline experiments

Liquid Scintillator Studies

- How will the scintillator perform at the ocean floor?
- LAB, PPO & BisMSB
- Bicron (proprietary)
- Depth of 4km:
 - 4 °C
 - 6000 PSI

Stefanie Smith. University of Hawai'i at Manoa

Fermat's Principle

"The path taken between two points by a ray of light is the path that can be traversed in the least time."

- As muon travels through liquid scintillator, photons are emitted isotropically.
- A "Fermat Surface" (Cerenkov and spheres) is defined by the wavefronts of first hit times
- Huge statistics determining this surface

See: "High Energy Neutrino Physics with Liquid Scintillation Detectors" John G. Learned arXiv:0902.4009

Fermat and Equi-Charge Surfaces

 Approx. 5m long muon track centered in a 40m x 40m right cylinder detector

The Fermat Surface

- Electron and muon events are distinguishable by differences between equi-charge and equi-time surfaces
- Opens up the study of high energy (~1GeV) neutrino interactions with LS detectors
- Potential for long baseline experiments
- Does not interfere with lower energy (MeV) physics (e.g. reactors, geonus, supernovae, etc.)

Time and Charge Fits

Simple Point Fits (Q and T) Give Center of Track and point Near Origin

Stefanie Smith. University of Hawai'i at Manoa

Erice. 2009

Further: Much Information in Time Distribution of Hits (PMT Waveform)

Sample PMT hit time distributions from top of detector

Stefanie Smith. University of Hawai'i at Manoa

Erice. 2009

First Results on Tomographic Reconstruction

Stefanie Smith. University of Hawai'i at Manoa

Applications

- Long Baseline with accelerators ~ 1 GeV
 - Hanohano with Tokai Beam?
 - LENA with CERN beam?
 - New DUSEL Experiment with Fermilab Beam?
- Nucleon Decay (high free proton content)
 - See details of decays such as Kaon modes
- Particle Astrophysics (low mass WIMPS,...)
- All the Low Energy Physics (geonus, reactor studies, monitoring, solar neutrinos.....) unimpeded!

Outlook

- Hanohano will give unique insights in geology and neutrino physics
- Development of Hanohano technologies is key to geoneutrino and reactor studies
- Large LS detectors are capable of detailed neutrino physics.
- "Fermat Surface" technique opens new avenues for neutrino physics with LS detectors.

Mahalo!

ATIM

- min