

The Windowless Gaseous Tritium Source of KATRIN

W. Käfer, for the KATRIN Collaboration Karlsruhe Institute of Technology

International School for Nuclear Physics: Neutrinos in Astro- Particle- and Nuclear Physics

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

- Why is the WGTS important?
- What processes do we have to understand?
- How do experimental conditions and theoretical calculations affect the KATRIN spectrum?

Functional description of the WGTS

Purpose: Delivery of 10¹¹ β decay electrons per second

Wolfgang Kaefer Erice 2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Source of systematic shift	Systematic shift σ _{syst} (m _v 2)[10 ⁻³ eV ²]
Final State Distributions	<6
Unfolding energy loss function/determination of f _{res}	< 2
ρ d monitoring	$<\sqrt{5} \cdot 0.65$
HV variations	<5
Magnetic field variations in WGTS	<2

Understanding the WGTS is crucial!!!

Wolfgang Kaefer Erice 2009

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

WGTS gas dynamics

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

First Look at Radial dependency

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Maxwell Boltzmann distribution + bulk velocity U_z

$$f(\vec{r}, \vec{v}) \approx \frac{n(z)}{\left(\sqrt{\pi}v_{u}\right)^{3}} \exp\left[-\frac{v_{r}^{2} + v_{\varphi}^{2} + \left(v_{z} - U_{z}\right)^{2}}{v_{0}^{2}}\right]$$

Thermal velocity ~ 288 m/s Bulk velocity ~ 10- 40 m/s

example:

electron energy: 18575 eV (endpoint) T₂ velocity: 288 m/s Energy shift for parallel emission:

∆E = 129 meV

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

WGTS model: Principle

3D WGTS model

Radial pixels:

detector layout

First WGTS model: only integrated properties considered
refined WGTS model (3-dimensional) to include inhomogeneities
With detailed distributions:

Create "voxelized" β spectra

Calculation of the β Spectrum

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Final State Distribution

Daughter molecule (³HeT / ³HeD) has rotational/vibrational/electronic excitations

- ➔additional energy loss
- **→modified** β Spectrum

$$\frac{dN}{dE} \propto \sum_{f} P_{f} \left(E_{0} - E_{f} - E \right) \sqrt{\left(E_{0} - E_{f} - E \right)^{2} - m_{v}^{2}}$$
$$\Theta \left(E_{0} - E_{f} - E - m_{v} \right)$$

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Understanding the WGTS is important for KATRIN systematics

- Broad range of physics
- **3D WGTS model:**

Calculation of β – Spectrum for segments of the WGTS

Validation with test experiments and monitoring

Next: "Demonstrator" measurements end of this year

Backup

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

For 1 (a) or 2 interactions (b)

Aseev et al. Eur. Phys. J. D 10, 39{52 (2000)

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

BT cooling – Ne/Ar thermosiphon

Wolfgang Kaefer Erice 2009

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Neutrino mass and β-decay

kinetic measurement of the neutrino mass

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

