



### **MINOS experiment at Fermilab**

### Tom Kafka for the MINOS Collaboration

Argonne · Athens · Benedictine · Brookhaven · Caltech · Cambridge · Campinas · Fermilab · Harvard · IIT · Indiana · Minnesota (Minneapolis; Duluth) · Otterbein · Oxford · Pittsburgh · Rutherford · Sao Paulo · South Carolina · Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL · Warsaw · William & Mary

> 27 institutions 140 physicists









- This talk The experiment
  - v oscillations in the NuMI beam:
    - (1)  $v_{\mu}$  disappearance
    - (2)  $v_{e}$  appearance
    - (3)  $\nu$  NC disappearance (sterile  $\nu$  mixing)
    - (4)  $\overline{v}_{\mu}$  disappearance
  - Summary
- <u>Other</u> Atmospheric v oscillations
- topics . Non-oscillation topics:
  - v cross sections
  - Quasi-elastic reactions
  - v-nucleus coherent reactions

- Cosmic-ray µ measurements:
  - Charge ratio
  - Seasonal variations
  - Sudden stratospheric warming





### Three-neutrino mixing:

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{cr}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{cr}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$
  
Atmospheric  $\mathbf{v}$  Not measured yet Solar  $\mathbf{v}$   
*MINOS:*  

$$\mathbf{v}_{\mu}/\nabla_{\mu} \text{ disappearance} \quad \mathbf{v}_{e} \text{ appearance} \qquad \mathbf{N}/\mathbf{A}$$

$$U_3 = R_{23}(\theta_{23}) R_{13}(\theta_{13}, \delta_{CP}) R_{12}(\theta_{12})$$

Four-neutrino mixing:

 $U_4 = R_{34}(\theta_{34}) R_{24}(\theta_{24}, \delta_2) R_{14}(\theta_{14}) R_{23}(\theta_{23}) R_{13}(\theta_{13}, \delta_1) R_{12}(\theta_{12})$ 

MINOS: v NC disappearance/ $v_s$  mixing

Sept. 2009



a long-baseline neutrino oscillation experiment.

**MINOS** experiment

T. Kafka, MINOS

MINOS (Main Injector Neutrino Oscillation Search) – Far Det., 5.4 kton

NuMI (Neutrinos at the Main Injector) beam provided by 120 GeV protons from the Fermilab Main Injector.

Near Detector (@ 1 km) at Fermilab to measure the beam composition and energy spectrum.

Far Detector (@ 735 km) deep underground in the Soudan Mine, Minnesota, to search for evidence of oscillations.











### NuMI beam





- 120 GeV protons strike carbon target.<sup>Hadron Monitor</sup>
- 10  $\mu$ s long pulse of 3x10<sup>13</sup> protons every 2.2 seconds (275 kW).
- Two magnetic horns focus secondary  $\pi/K$ ; decays of  $\pi/K$  produce neutrinos.
- Move target and/or horns to vary neutrino beam energy.
- In Low-Energy (LE) beam: 91.7%  $v_{\mu}$ , 7.0%  $\overline{v}_{\mu}$ , 1.3%  $v_{e} + \overline{v}_{e}$



Rock



# **MINOS** detectors



- Near and Far detectors are magnetized (1.3 T), functionally identical.
- 1-inch thick octagonal steel planes, alternating with planes of
   4.1 cm × 1 cm scintillator strips, up to 8 m long.



#### Near:

~ 1kton,
282 squashed octagons,
partially instrumented.



### Far:

5.4 kton,486 8-m octagons,fully instrumented.

Sept. 2009

7

CC:  $E_v = E_{hadrons} + E_{lepton}$ 

3.5m مى ئىلايىتىلىلىلىل Long  $\mu$  track & hadronic activity at vertex

NC:  $E_v \approx E_{hadrons}$ 

 $v_{\mu}$  charged-current ev.

 $v_u + Fe \rightarrow \mu + X$ 

UΖ

VZ

MINOS event topologies

$$v + Fe \rightarrow v + X$$



Short event, often diffuse

 $v_e$  CC event

**Monte** 

Carlo

 $v_{e} + Fe \rightarrow e + X$ 

υz

Short, with typical EM shower profile





Neutral-current ev.







#### Exposure:

 $3+ \times 10^{20} \text{ POT}$ 

#### Neutrino flux:

MC flux adjusted to fit data in the Near Detector.

#### **Basic cuts:**

Beam quality and detector quality cuts

 Beam positioning, magnetic horns energized, detector running within operational parameters
 Event vertex reconstructed within the fiducial volume of the detector.

#### Blind analysis:

FD spectra were analyzed only *after* the analysis procedure was finalized and basic data integrity checks were performed.

#### Next:

Analysis underway of a larger data set already on hand,  $7 \times 10^{20}$  POT.



$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$$

# (1) $v_{\mu}$ CC disappearance

- $v_{\mu} \rightarrow v_{\tau}$  oscillations
- Measure  $\Delta m_{32}^2$ ,  $sin^2 2\theta_{23}$
- v decay, decoherence, ...







Need to separate  $v_{\mu}$  charged-current (CC) and neutral-current (NC) interactions Four variables combined using a k-nearest-neighbors algorithm

- Event length (Track length for  $v_{\mu}$  CC);
- Mean pulse height per plane along the track;
- Transverse energy deposition profile of the track;
- Pulse height fluctuations along the track.





#### The observed Near-Det. energy spectrum is extrapolated to the Far-Det.:

The energy spectra at the two detectors differ by ~20% due to meson decay kinematics, beamline geometry and detector acceptance.

Using Monte Carlo, encode these differences into a beam transfer matrix used to convert ND to FD spectrum









- $3.36 \times 10^{20} \text{ POT}$
- Use both LE and HE beam.
- Blind analysis.
- Expected 1065  $\pm$  60 with no osc.;
- Observed 848 events.
- Energy spectrum fit with the oscillation hypothesis

$$P(v_{\mu} \rightarrow v_{\tau}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E}\right)$$
$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - P(v_{\mu} \rightarrow v_{\tau})$$









- $|\Delta m_{32}^2| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$  (68% C.L.)
- $\sin^2(2\theta_{23}) > 0.95$  (68% C.L.), 0.90 (90% C.L.)
- $\chi^2/N_{DoF} = 90/97$  Phys. Rev. Lett. 101, 131802 (2008)

14

Two alternative disappearance models are disfavored:

 $v_{\mu}$  CC disappearance – Alternative models

[1] Decay without oscillations:

 $\chi^2$ /ndof = 104/97  $\Delta \chi^2 = 14$  *disfavored at 3.7 o* (5.4 o if combine CC & NC)

[2] Decoherence:

 $\chi^2$ /ndof = 123/97  $\Delta \chi^2$  = 33 *disfavored* at 5.7  $\sigma$ 

[1] V. Barger *et al.*, PRL **82**, 2640 (1999)
[2] G.L. Fogli *et al.*, PRD **67**, 093006 (2003)







$$\begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{cr}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{cr}} & 0 & \cos\theta_{13} \end{pmatrix}$$

# (2) $v_e$ appearance

- Search for  $v_{\mu} \rightarrow v_{e}$  oscillations
- Aim to measure  $\sin^2 2\theta_{13}$







- Select  $v_e$  CC candidate events in the MINOS detectors.
- Measure the background applying  $\nu_e$  selection to events in the Near Detector.
- Extrapolate the number of background events to the Far Detector taking into account  $v_{\mu} \rightarrow v_{\tau}$  oscillations.
- Look for an excess of  $v_e$  events in Far Detector data.





#### Preliminary cuts:

- Track length < 25 planes
- Reconstructed energy 1-8 GeV. Improve Signal:Background from 1:55 to 1:12
- At least one shower (signal at CHOOZ limit assumed)

#### Multivariate methods devised to select shower topology:

#### Artificial Neural Networks (ANN)\_(*Primary method*)

- 11 input variables describing length, width and shower shape.
- ANN algorithm achieves:
  - signal efficiency 41%
  - NC rejection >92.3%
  - CC rejection >99.4%
  - Signal/Background 1:4

#### Library Event Matching (LEM)\_(Secondary method)

• Compare each input event to a large library of MC  $v_e$  CC and NC events.









### Backgrounds:

- **N**eutral-**C**urrent events (with  $\pi^{0}$ ) - V
- $-v_{u}$  Charged-Current events (with  $\pi^0$  and short  $\mu$  track = high *y*)
- $-v_{e}$  intrinsic to the NuMI beam

Use data based method(s) to determine the background components: (1)Horn-Off (Primary method) (2) Muon-Removed CC (Secondary method)

Horn-Off and Horn-On v beams have very different energy distributions and very different NC vs CC composition in ND







- Calculate event rates  $N_{NC}^{data_{on}}$  and  $N_{CC}^{data_{on}}$  in terms of

 $N^{data_{on}}$  and  $N^{data_{off}}$  from data and ratios

 $N_{NC(CC,e)}^{MC_{off}}/N_{NC(CC,e)}^{MC_{on}}$  from MC (modeled satisfactorily).

- Number of beam  $v_e$  is obtained from MC flux (constrained by  $v_{\mu}$  CC data).
- Resulting bkgnd composition in ND: (57±5)% NC, (32±7)% CC, (11±3)% b. v<sub>e</sub>



Reconstructed Energy (GeV)

- Propagate background from Near to Far Detector (using "Far/Near" method).
- Extensive study of systematic effects:
  - -> Total systematic error 7.3 % cf. statistical error of 19 %

The background prediction in the Far Detector is: 27±5(stat)±2(sys) (at 3.14 x10<sup>20</sup> POT)





- Choose final event selection algorithm based on side bands only. Then OPEN THE BOX.
- *Example of a side band:* Region of Particle-ID (PID) parameter

well below the final cut. Finding no significant disagreement.



Observe 146 events.

 Expect 132±12(stat)±8(sys) events.

Note: PID cut established prior to "Box" opening by maximizing the Figure of Merit,  $FOM = Signal/\sqrt{(Background + \sigma_{syst}^2)}$ 

### $v_e$ – results for 3.14 x10<sup>20</sup> POT

- Observe 35 events in FD after selection.
- Expect 27±5(stat)±2(sys) background events.
  - ··· 'Excess' of 1.5σ









- Fit the oscillation hypothesis to our data for 3.14 x10<sup>20</sup> POT
- Display best fit & 90% CL contours obtained using Feldman-Cousins method.
- Use MINOS best fit from  $\nu_{\mu}$  CC







### (3) v NC disappearance

- Look for dearth of Neutral-Current events at the Far Detector as a possible indication of sterile neutrino mixing.
- Consider  $\nu$  oscillations with  $\nu$  decay.





- NC interaction rates are the same for all active v flavors. •
- Oscillations among active flavors don't affect NC • spectrum.
- Sterile neutrinos would not interact in the detector. •
- Sterile v signal: •

Energy-dependent depletion of Far-Detector NC spectrum

This analysis:

- Cut based, very simple selections,
- CC background straightforward to estimate.



#### Reconstructed NC energy spectrum



### NC event selection



#### NC = shower topology, no long tracks

- Event length < 60 planes
- No tracks extending > 5 planes beyond the shower





### NC at the Far Detector



Beam exposure: 3.18x10<sup>20</sup> POT Observe: 388 data events Expect:

 $377 \pm 19.4$ (stat)  $\pm 18.5$ (syst)

$$R = \frac{N_{data} - \Sigma B_{CC}}{S_{NC}},$$

 $B_{CC}$  – Predicted CC background

- $S_{NC}$  Predicted NC signal
- $R = 1.04 \pm 0.08 \pm 0.07$  (no  $v_e$  app.)
  - = 0.94±0.08±0.07 (with  $\nu_{\rm e}$  at CHOOZ limit)



. Data is consistent with no NC disappearance.



### Oscillations with decay

- If neutrinos were to decay into a sterile species, NC spectrum would also be affected.
- Perform joint NC + CC fits to the LE-beam data using a model with concurrent
  - neutrino oscillations ( $v_{\mu} \rightarrow v_{\tau}$ ),
  - subdominant single mass scale decays.
- Assume normal ordering,  $m_3 >> m_2 \sim m_1$ ;  $v_3$  can decay with lifetime  $\tau_3$ .

$$P_{\mu\mu} = \cos^{4}\theta + \sin^{4}\theta e^{-\frac{\alpha L}{E}} + 2\cos^{2}\theta \sin^{2}\theta e^{-\frac{\alpha L}{2E}} \cos\left(\frac{\Delta m_{32}^{2}L}{2E}\right)$$
$$P_{decay} = \left(1 - e^{\frac{\alpha L}{E}}\right)\sin^{2}\alpha, \text{ where } \alpha = m_{3}/\tau_{3}$$

: 
$$\alpha < 1.6 \times 10^{-3}$$
 GeV/km (90% C.L.)  
 $\tau_3/m_3 > 2.1 \times 10^{-12}$  s/eV (90% C.L)

Consistent with maximal mixing,  $\theta = 45^{\circ}$ , and no neutrino decay.





$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\overline{\theta}_{23} & \sin\overline{\theta}_{23} \\ 0 & -\sin\overline{\theta}_{23} & \cos\overline{\theta}_{23} \end{pmatrix}$$

# (4) $\overline{v}_{\mu}$ disappearance/appearance

• 
$$\overline{v}_{\mu} \rightarrow \overline{v}_{\tau}$$
 oscillations

• 
$$v_{\mu} \rightarrow \overline{v}_{\mu}$$
 appearance





- Magnetic field -> separate the 7%  $\overline{v}_{\mu}$  component of the forward-horn-current beam.



40

10

10<sup>3</sup> Events

#### 30

• Efficiency & contamination: >80% <5% for *p*>5 GeV/*c* 

 Near to Far extrapolation via Beam Matrix method, like  $v_{\mu}$ 

- Event selection:
- Basic cuts same as previous  $v_{\mu}$  CC
- Cut harder on CC/NC separation parameter
- Track-fit charge sign significance,  $q/p/\sigma(q/p)$
- Relative angle (away or toward mag. coil)



Antineutrinos in MINOS - selection



# Antineutrinos at the Far Detector

15

10

- Predict:
  - Null oscillations:

 $64.6 \pm 8.0$  (stat.)  $\pm 3.9$  (syst.)

- CPT conserving oscillations:  $58.3 \pm 7.6$  (stat.)  $\pm 3.6$  (syst.)
- Observe:

42 events

- First direct observation of  $\overline{v}_{u}$  disappearance in an accelerator LB expt.
- Observe 1.9 $\sigma$  deficit wrt v<sub>u</sub> -> Extensive checks did not yield any evidence for a bias.

Sept. 2009

#### Events / 4 GeV Far Detector 3.2×10<sup>20</sup> POT 5 5 15 10 20 30 40 Reconstructed $\overline{v}_{\mu}$ Energy (GeV)

**MINOS** Preliminary



Far Detector Data

No Oscillations

**CPT** Conserving

Systematic Error

Low Energy Beam

Background (CPT)

50



### Antineutrino oscillations





- Contours obtained using Feldman-Cousins technique, including systematics.
- CPT conserving best fit from  $v_{\mu} \rightarrow v_{\tau}$  analysis lies within the 90% CL contour.
- Probability of observing the present  $\overline{v}_{\mu}$  result if the CPT conserving value were true is 5.2%.
- At maximal mixing we exclude

 $(5.0 < \Delta \overline{m}^2 < 81) \times 10^{-3} \text{ eV}^2$  (90% C.L.)













- Reverse current in the NuMI focusing horns.
- Obtain a greatly enhanced  $\nabla_{\mu}$  sample below 5 GeV (incl. the oscillation maximum).
- Data taking began earlier this month.



Will enable a more precise measurement of the  $\nabla_{\mu}$  oscillation parameters than possible with forward horn current (7%  $\nabla_{\mu}$ ).

Sept. 2009





# Non-oscillation physics in the MINOS Near Detector

An example: Measurement of cross sections for  $v_{\mu}$ -nucleus and  $v_{\mu}$ -nucleus interactions.









# **MINOS** summary



### • $v_{\mu}$ disappearance:

 $v_{\mu} \rightarrow v_{\tau}$  oscillation parameters @ 68% C.L. :  $|\Delta m^2| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2, \sin^2(2\theta) > 0.95$ 

• *v<sub>e</sub> appearance:* 

MINOS can probe  $\theta_{13}$  at/below the CHOOZ limit; 1.5  $\sigma$  excess, wait for results from double the data set.

• vNC disappearance:

NC rate @ FD consistent with active v flavor mixing only,

 $R = 1.04 \pm 0.08 \pm 0.07$  (when set  $\theta_{13} = 0$ ).

•  $\overline{v}_{\mu}$  disappearance:

Observe  $\overline{v}_{\mu}$  disappearance with low statistics; dedicated  $\overline{v}_{\mu}$  run in progress.