

Electromagnetic Design of the Spectrometer Section of the KATRIN Experiment

Susanne Mertens for the KATRIN Collaboration

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Susanne Mertens Erice 2009 17.09.09

Universität Karlsruhe (TH) Research University - founded 1825

Overview

- Why do we have electric and magnetic fields at the KATRIN experiment?
- What are the challenges of the Electromagnetic Design?
- How is it realized?

Why do we have electric and magnetic fields at the KATRIN experiment?

Role of the electric potential: high energy electron filter

Role of the magnetic field: guiding system

Interplay of electric potential and magnetic field

Interplay of electric potential and magnetic field

MAC-E-Filter-Principle: Magnetic Adiabatic Collimation and Eletric filter

Overview

- Why do we have electric and magnetic fields at the KATRIN Experiment?
 - High energy electron filter (electric potential)
 - Guiding and energy transformation (magnetic field)
- What are the challenges of the Electromagnetic Design?
- How is it realized?

1st Goal:

Realize the MAC-E-Filter principle in the optimal way

- Homogeneous electric potential in analyzing plane
- Homogeneous magnetic field in analyzing plane
- Slowly increasing electric potential relative to decrease of magnetic field
- Slowly decreasing magnetic field to assure adiabaticity

2nd Goal: Reduce Background

Background Sources

- 1. Electrons being emitted from the inner surface of the wall
- 2. Stored Electrons in penning traps

Reduce background with the Electromagnetic Design

Desired background level: 10⁻² electrons/s = 10 mHz

Cosmie muon

 10^5 electrons/s from the wall

- \rightarrow Magnetic shielding (10⁵)
- \rightarrow Wire electrodes (10²) (Talk by Kathrin Valerius)

10² - 10¹⁵ electrons/s from penning traps → Specially designed electrodes

Reduce background with the Electromagnetic Design

Desired background level: 10⁻² electrons/s = 10 mHz

Cosmie muon

 10^5 electrons/s from the wall

- \rightarrow Magnetic shielding (10⁵)
- \rightarrow Wire electrodes (10²) (Talk by Kathrin Valerius)

10² - 10¹⁵ electrons/s from penning traps → Specially designed electrodes

Reduce background with the Electromagnetic Design

Desired background level: 10⁻² electrons/s = 10 mHz

Cosmie muon

 10^5 electrons/s from the wall

- \rightarrow Magnetic shielding (10⁵)
- \rightarrow Wire electrodes (10²) (Talk by Kathrin Valerius)

10² - 10¹⁵ electrons/s from penning traps → Specially designed electrodes

Overview

- Why do we have electric and magnetic fields at the KATRIN Experiment?
 - High energy electron filter (electric potential)
 - Guiding and energy transformation (magnetic field)
- What are the challenges of the Electromagnetic Design?
 - Realize MAC-E-Filter in optimal way
 - Reduce Background

1st Example: Aircoil System

Task of Aircoil System

Task of Aircoil System

Universität Karlsruhe (TH) Research University . founded 1825

Task of Aircoil System

Incorrect transmission condition

Outcome

With EMCS (Earth's magnetic field compensation system)

Susanne Mertens Erice 2009 17.09.09

Universität Karlsruhe (TH) Research University - founded 1825

Outcome

With EMCS + LFCS (Earth's magnetic field compensation system + Low field coil system)

2nd Example: Special shaped ground electrode

Background at prespectrometer

Reason for background: Tiny penning trap at exit/entrance of pre-spectrometer

Penning Trap

Simulation:

Penning Trap

How this Penning trap produces background

Pressure dependence

- Both filling mechanism and background production depend on pressure
- We expect a quadratic dependence on pressure

How to get rid of the background

Solution: Remove penning trap with new specially shaped ground electrode

Simulation:

Before

Electric potential along magnetic fieldlines

Conclusion and Outlook (I)

- By removing all penning traps we reach the desired background level: O(10 mHz)
- Prespectrometer is ready to be implemented in the whole setup
- Low background is expected for the main spectrometer
- Mainspectrometer test measurements will start next year

Conclusion and Outlook (II)

- Precise simulation is necessary to design hardware components
- Success at prespectrometer = proof of quality of the simulation programs (Ferenc Glück)
- Towards a global simulation (including all KATRIN components, e.g. Source (talk of Wolfang Käfer))

Summary

- Why do we have electric and magnetic fields in the KATRIN experiment?
 - Electric potential used as high energy electron filter
 - Magnetic field used guiding system and to transform energy
- What is the challenge of the electromagnetic design?
 - Realize MAC-E-Filter in optimal way
 - Reduce background
- How is this realized?
 - Aircoil System (good transmission properties, low background)
 - Specially shaped ground electrode (low background)

Thank you for your attention

Thanks to all the pre-spectrometer people: Florian Fränkle, Florian Habermehl, Ferenc Glück, Michael Zacher, Lutz Bornschein and many others

