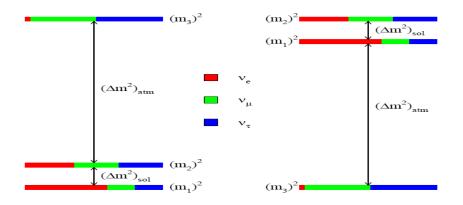
Neutrino Mass and Unification

R. N. Mohapatra

2009 Erice School on Neutrinos

Implications of neutrino mass results for Theory


What we may have learnt?

What we need to learn and how?

A subjective overview

Present information: Masses and mixings

- Masses: $\Delta m_{sol}^2 \cong 7.67 \times 10^{-5} \, eV^2$; $\Delta m_{Atm}^2 \cong 2.39 \times 10^{-3} \, eV^2$
- Mixings: $\sin^2 \theta_{12} \cong .312$; $\sin^2 \theta_{23} \cong .466$; $\sin^2 \theta_{13} \leq .04$
- Overall mass scale: < .1- 1 eV (roughly) (WMAP,..)</p>
- Mass ordering not known:

Need to know...

(i) Majorana or Dirac $\beta \beta_{0\nu}$

(Nucl matrix element : Fassler et al.; Talk by Simkovic Suhonen ..)

(ii) Absolute mass scale:

(iii) Mass ordering:

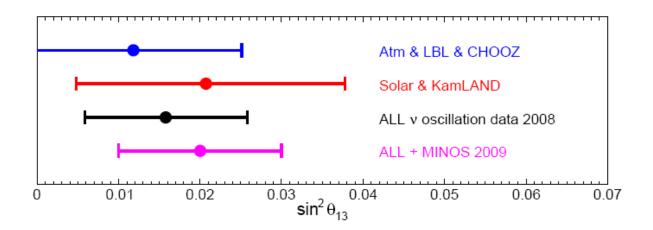
(iv) Value of θ_{13}

(v) CP phase

Dirac vs Majorana

- Very important for determining the nature of new physics:
- Can we tell experimentally?
- Observe $\beta \beta_{0\nu} \rightarrow Majorana$.
- If no signal till 20 meV → could be Majorana with normal hierarchy;
- However, no $\beta\beta_{0\nu}$ signal till 20 meV + $\Delta m_{23}^2 < 0$ from long Baseline expts \rightarrow strong hint for

Dirac Rest of this talk assumes Majorana nu



What is value of

?

Recent indications ? (Fogli, Lisi, Marrone, Pallazo and Rotunno'08)

Too early for definite conclusion--However

Value of θ_{13} significant for new physics

Goal of Theory

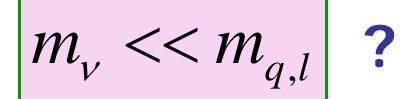
- Determining and understanding the Neutrino mass matrix :
- Two parts to the story:

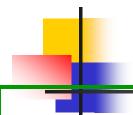
$$M_{\nu} = m_{\nu} \times A_{F}$$

- (i) Scale m_{ν}
- (ii) Flavor structure A_F (The neutrino matrix)

Challenges

(i) Scale issue: Why

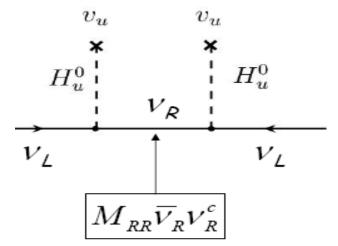

$$m_{\nu} \ll m_{q,l}$$
 ?


- (ii) Flavor issues: A_F ?
- A. Milder mass hierarchy compared to quarks and charged leptons: m_{μ} m_{μ}

charged leptons:
$$\frac{m_{sol}}{m_{atm}} \approx \theta_C >> \frac{m_{\mu}}{m_{\tau}}, \frac{m_s}{m_b}$$

- B. Neutrino mixing angles much larger than quark mixings: e.g. $V_{23}^{l} \approx 0.7 >> V_{23}^{CKM} \approx 0.04$ etc.
- C. Quarks and leptons so different- are they unifiable?

Why



Seesaw Paradigm

• Add right handed neutrinos N_R to SM with Majorana mass:

$$L_{Y} = h_{v} \overline{L} H N_{R} + M_{R} N N$$

$$m_{v} \cong -\frac{h_{v}^{2} v_{wk}^{2}}{M_{R}}$$

Standard seesaw (Type I):

■Minkowski,Gell-Mann, Ramond, Slansky,Yanagida, Mohapatra,Senjanovic,Glashow

Neutrino mass → new symmetry of Nature: B-L

- Why B-L Symmetry?
- $\blacksquare \ \, \mathbf{Seesaw} \,\, \mathbf{scale} \,\, \boldsymbol{M}_{\,R} \,\, \mathbf{breaks} \,\, \mathbf{this} \,\, \mathbf{symmetry} \,\,$
- The question is why $M_R << M_{Pl}$?
- Having a B-L symmetry explains this.
- Is it a global or local symmetry?
- Most likely local since adding RH nu's to SM makes B-L local sym. → Z'

Need to learn: What is the B-L Scale M_R ?

- Two extreme cases: $m_D = hv_{wk}$
- $m_D \approx m_t$ (suggested by Q-L unif as in GUTs) leads to
 - $M_R \approx 10^{14} GeV$ -SCALE CLOSE TO GUT SCALE-
- Corresponding theory of seesaw is: SO(10):
- $m_D \approx m_e$ Scale much lower $M_R \approx \text{TeV}$;
- Theory is left-right model based on $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ motivated independently Considerations e.g. parity, CP etc.
 - Physics accessible to LHC, $\beta\beta_{0\nu}$ decay etc.

Double (Inverse) Seesaw

- Low scale seesaw with no small couplings:
- RH neutrinos + 3 additional gauge singlet fermions → 3x3 neutrino matrix:

$$\begin{pmatrix} 0 & hv_{wk} & 0 \\ hv_{wk} & 0 & M \\ 0 & M & \mu \end{pmatrix} \qquad m_D = hv_{wk} \quad \text{(RNM, Valle, 86)}$$

$$m_V \cong -m_D^T M^{-1} \mu M^{-1} m_D$$

- µ determines both scale and flavor structure;
- ullet m_D decoupled from scale unlike type I; Seesaw scale can be in TeV range without small Yukawas

Second Challenge for theory: Large lepton mixings:

- Could they be hints of new symmetries for leptons:
- (i) Near maximal θ_{23} : very suggestive of $\mu \tau$ exchange sym. for neutrino matrix: How maximal?
 - (ii) Solar angle $\theta_{12} \approx 35^{\circ}$ suggests tribimaximal scheme if $\theta_{13} = 0$ ->

Wolfenstein; Harrison, Perkins, Scott; Xing,

$$V = \begin{pmatrix} \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0\\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

The Neutrino Matrix:

Flavor of the Neutrino flavor research

Find A_F

Generic mass matrix (NH) $\varepsilon_i \approx \lambda_{Cabibbo} << 1$

$$\varepsilon_i \approx \lambda_{Cabibbo} << 1$$

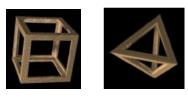
 θ_{23} NEAR MAXIMAL

$$heta_{23}$$
maximal

$$\begin{pmatrix}
\varepsilon_{5}^{n\geq 1} & \varepsilon_{4} & \varepsilon_{3} \\
\varepsilon_{4} & 1+\varepsilon_{1} & -1 \\
\varepsilon_{3} & -1 & 1+\varepsilon_{2}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
\varepsilon_{5}^{n\geq 1} & \varepsilon_{3} & \varepsilon_{3} \\
\varepsilon_{3} & 1+\varepsilon_{1} & -1 \\
\varepsilon_{3} & -1 & 1+\varepsilon_{1}
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{1} & \varepsilon_{3} & \varepsilon_{3} \\
\varepsilon_{3} & 1+\varepsilon_{1} & -1+\varepsilon_{3} \\
\varepsilon_{3} & -1+\varepsilon_{3} & 1+\varepsilon_{1}
\end{pmatrix}$$

$$\longrightarrow \mu \leftrightarrow \tau \text{ sym.}$$

5 parameters


3 param.

2 param.

Understanding the pattern

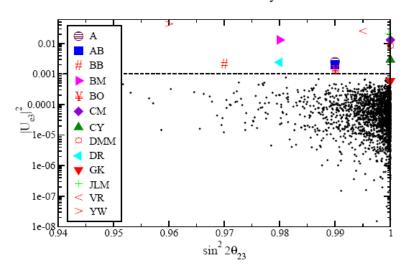
- **GUTs**: **SO(10)**
- Family symmetries motivated by TBM:

$$S_{2(\mu-\tau)} \subset S_3, S_4, A_4, Z_2, \Delta(3n^2),...$$

• Non-zero θ_{13} will provide important clue about new physics- is it symmetry + corrections or perhaps TBM an accident ?

(For extensive references, see G. Altarelli, Fermilab Neutrino summer school lectures; Talks at this school by M. Chen, R. Volkas, F. Feruglio)

-0.01


-0.6

9₁₃:Discriminator between Symmetry vs GUTs

mu-tau sym

0.015 0.01 0.005 0.005 TBM (Albright, Rodejohann)

Normal hierarchy

correlation with atm mixing –

cos2⊕A

■ GUT predictions generally larger than 0.03.

0.2

NEUTRINO MASS: A SIGNAL OF GRAND UNIFICATION?

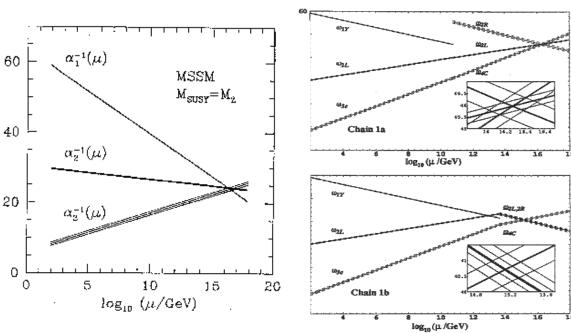
Grand unification hypothesis: all forces and all matter become one at high energies no matter how different

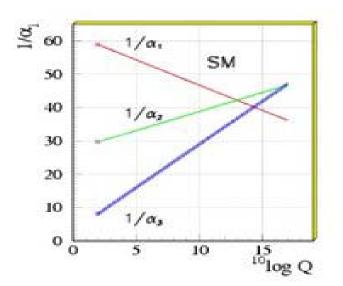
they are at low energies. Leptons ->

quarks→

become same.

- ---- Explains charge quantization;
- ----High scale goes well with ideas in cosmology;
- ----Goes well with high scale version of seesaw.


Some examples:


SUSY

Non-SUSY SO(10)

SM

with seesaw

Scale of grand unification ~ $10^{16} GeV$

Which GUT group?

- Two simplest are: SU(5) and SO(10):
- (i) SU(5):

(I) SU(5):

minimal: > Fermions:
$$5 = \begin{pmatrix} d^c \\ d^c \\ d^c \\ \nu \\ e^- \end{pmatrix}$$
 and $10 = \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ 0 & u_1^c & u_2 & u_3 \\ 0 & u_3 & d_3 \\ e^+ \\ 0 \end{pmatrix}$

- > : Higgs 5⊕5 ⊕ 24.
- ightharpoonup Predicts: at M_U , $m_b = m_{\tau}$; very good prediction Also predicts $m_s = m_\mu$; $m_d = m_e$; VERY BAD PREDICTION!!
- No explanation of neutrino mass:

Why SU(5) not satisfactory

- Minimal model ruled out by proton decay!
- Not predictive for neutrinos- so no advantage of GUTs except scale!
- However one nice feature: $m_b = m_ au$

SO(10)-Just right for neutrinos

 Minimal GUT group with complete fermion unification (per family) is SO(10)-its spinor rep contains all 16 needed fermions (including RH nu) in single rep.

 $\begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{r,p}$

- Georgi; Fritzsch, Minkowski (74)
- Contains B-L needed to understand why MR<<
 M_Planck .
- B-L if properly broken also allows a naturally stable dark matter in MSSM.
- Also helps proton decay problem.

Appraising SO(10) as a theory of neutrinos

Quark lepton unif. means:

$$M_d = M_l + \delta M$$
 and $M_u = M_{v^D} + \delta M'$

With δM small.

- This means quark and lepton mixings are similar Disaster
- Most models keep breaking symmetry till they get $\delta M_{v^D} >> M_{u,d,l}$ and one gets large nu-mixings and a model. What trace is left of SO(10) ?

One exception!!

Minimal Predictive SO(10)

- **Minimal model:** 10+126+.. (Babu, Mohapatra, 93)
- Gives naturally stable dark matter without additional assumption.
- Relates RH neutrino spectrum to charged fermion spectrum reducing seesaw parameters;
 i.e. RH mass M_N has similar hierarchy as m_D
- Consequently type I inadequate: a new possibility emerges within the model.

How does it work?

T126}-Higgs relates nu matrix AF to quark-lepton flavor

$$M_{\nu} \cong c(M_d - M_l)$$

(Bajc, Senjanovic, Vissani'02)

Even though quark and lepton masses are strongly <u>hierarchical</u>, due to $m_b \approx m_{\tau}$, M_{ν} becomes less so and gives

$$\mathcal{M}_{\nu} = m_b c \lambda^2 \begin{pmatrix} \lambda^2 & \lambda^2 & \lambda \\ \lambda^2 & 1 + \lambda & 1 \\ \lambda & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} \lambda = \text{Cabibbo angle.} \\ \lambda^{\text{(Goh, RNM, Ng'03)}} \end{pmatrix}$$

Predictions

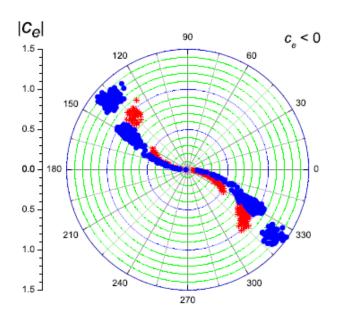
- Large solar and near maximal atmosph. mixing; diluted mass hierarchy, large θ_{13}
- Predictions: (qualitatively work very well.)
- θ_{12}, θ_{23} large

$$\theta_{13} \approx \lambda$$

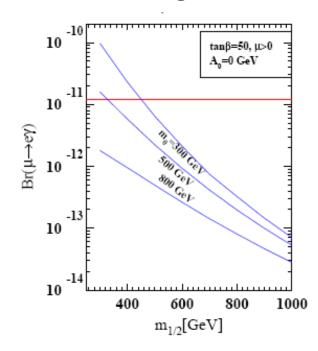
$$\frac{m_{solar}}{m_{atmos}} \sim \lambda$$
 (Diluted hierarchy)

A quantitative model that works: Improved SO(10)

- 10+126 model-hard to include CKM CP violation!
- Requires cancellation for proton decay!
- 10+120+126 model with spontaneous CP solves CP problem, proton decay problems while keeping neutrino Sector predictive; :(Dutta, Mimura, RNM,2005,06,07)
- Solution to proton decay dictates flavor texture:


$$h_{10} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; h_{126} = \begin{pmatrix} 0 & 0 & \lambda^3 \\ 0 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^2 \end{pmatrix}; h_{120} = \begin{pmatrix} 0 & \lambda^3 & \lambda^3 \\ -\lambda^3 & 0 & \lambda^2 \\ -\lambda^3 & -\lambda^2 & 0 \end{pmatrix};$$

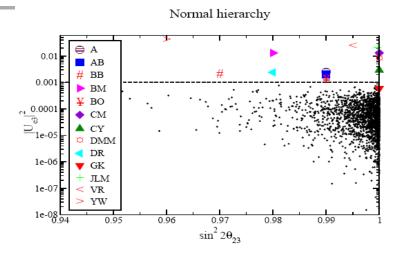
• Predicts
$$\theta_{13} \ge 0.06$$


Other Predictions:

Dirac Phase:

$$B(\mu \rightarrow e + \gamma) > 10^{-14}$$
 within range of

mu→ e+gamma


Further work on SO(10) + 126 models

- Fukuyama, Okada
- Goh, RNM, Ng
- Babu, Macesanu
- Bertolini, Malinsky, Frigerio
- Bertolini, Malinsky, Schwetz
- Aulakh, Bajc, Melfo, Senjanovic, Vissani
- Fukuyama, Okada, Kikuchi, Melajnac, Iljakovic
- Aulakh, Giridhar
- Dutta, Mimura, RNM
- Grimus, Kuhboch
- Aulakh, Garg
- Joshipura, Kodrani, Patel

Neutrino SUSY GUT summary:

PREDICTIONS

Large theta_13-;

■ Mu→e+gamma within MEG range

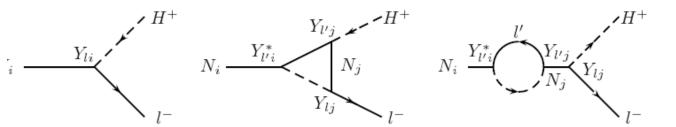
ISSUES

- (i) True test of GUTs proton decay $\tau \approx 10^{35} 10^{36} yrs$
- (ii) How to suppress dim 5 planck induced operator for proton decay: $\{\psi_m(16)\}^4/M_{Pl}$; strength has to be less than 10^{-7}

Very hard to test high scale seesaw models!!

Understanding the origin of matter within seesaw—

Seesaw and Origin of Matter:


- One advantage of seesaw is the possibility to understand origin of matter, using RH neutrino seesaw couplings. <u>Leptogenesis</u>
- **Proposal:** Heavy ν_R decays:

$$\nu_R \to L + H$$
 $R = (1 + \varepsilon)$
 $\nu_R \to \overline{L} + \overline{H}$
 $R = (1 - \varepsilon)$

 Generates lepton asymmetry which gets converted to baryons via sphaleron interactions; (Fukugita, Yanagida'86);

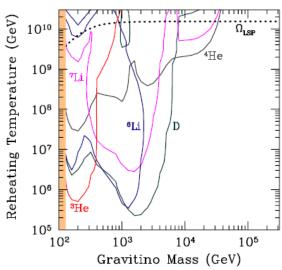
Diagrams:

- Two classes of models depending on RH masses
- High Scale leptogenesis: Adequate asymmetry; lightest RH nu $M \ge 10^9 GeV$ for hierarchical RH nu's. (Buchmuller, Plumacher, di Bari; Davidson, Ibarra)
- Resonant leptogenesis: degenerate N's, self energy diagram dominates: $\sim \frac{1}{M_i^2 M_j^2 + M\Gamma}$; Resonance $M_i \cong M_j$; works for all B-L scales.

(Liu, Segre'94; Covi et al. Flanz et al.'95; Pilaftsis'97)

ISSUES WITH HIGH SCALE SUSY LEPTOGENESIS

- Adequate baryogenesis requires the lightest RH neutrino mass $M_N \ge 3 \times 10^9$ GeV (Davidson, Ibarra)
- Problem for supersymmetric models:


they have gravitinos with TeV mass that are produced during

inflation reheat along with all SM particles

If stable Will overclose the universe for T_R>10^9 GeV.

If unstable, live too long -effect the success of BBN.

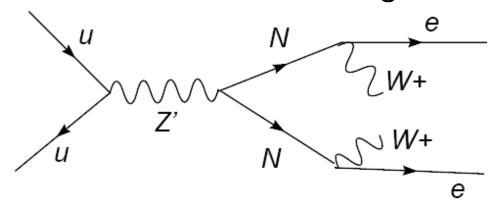
Kawasaki, Kohri, Moroi, Yatsuyanagi, 2008)

Could Seesaw be a TeV scale phenomenon?

- If so it is very likely that there is a new gauge symmety of Nature beyond SM that couples to RH neutrinos:
- The symmetry could involve either an extra Z' as in $SU(2)_L \times U(1)_{I_{3R}} \times U(1)_{B-L}$ or both WR and Z' as in left-right models.
- If masses are in few TeV range, production and decays at LHC could provide evidence of their existence via Z' decays $Z' \to NN; N \to lH$ and WR decays: $W_R^{+} \to l^+N \; ; N \to lH$

Current bounds on WR, Z'

- Collider limits on W_R: around 780
- Low energy limits: K-K-bar, CPV, edm etc:
 WR mass > 2.5 TeV(Zhang,An,Ji,RNM,2008; adopted by PDG)
- Limits from Neutrinoless double beta decay+ vacuum stability:

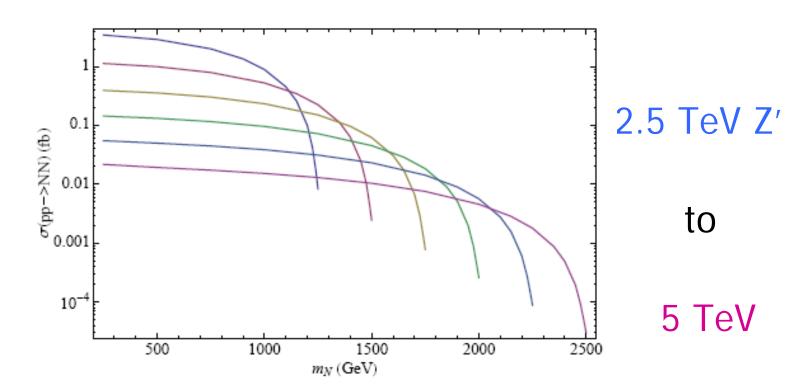

WR mass > 1.5 TeV. (Paes, Simkovic talk)

- Limits are lower for SUSYLR due to sparticle FCNC effects. (Zhang,An,Ji 2008)
- Z' mass bound: > 995 GeV (Langacker, Erler, Munir, Pena)

4

Collider Signatures

- Seesaw effect observable at LHC even with tiny v-N mixings as in generic neutrino models.
- pp \rightarrow Z'+X; Z' \rightarrow NN followed by N-decay;
- Like sign dileptons is the tell-tale seesaw signal.



• Keung-Senjanovic $pp \to W_R^+ \to l^+ N$

4

TeV Z' cross section at LHC

- LHC Z' reach 4 TeV
- Cross section for pp \rightarrow Z' \rightarrow NN (Z' \rightarrow NN branching ratio ~20%)

Testing seesaw with Z' decay

- PP→Z'+X; xsection for a 3 TeV Z' ~fb
- Seesaw signal: N=Majorana
- N→ ℓ^{\pm} W $\bar{\nu}$, $\bar{\nu}$ + Z W→jj , $l\nu$
- Di and Multi-lepton events: (X=jjjj) $pp \rightarrow l^{\pm}l^{\pm}X, l^{\pm}l^{\pm}l^{\mp} + E, l^{\pm}l^{\pm}l^{\mp}l^{\mp} + E$
- Important for signal to bg: very high pT leptons coming from N-decay; inv mass reconstruction:

(Del Aguila, Aguilar-Saavedra; P. Perez, Han, T. Li)

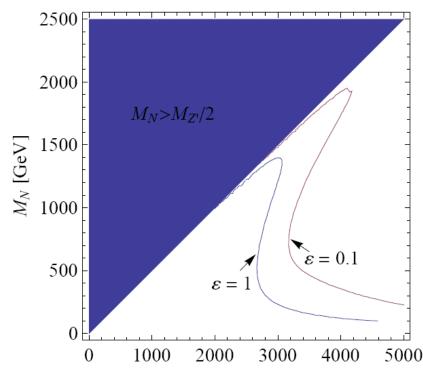
Does leptogenesis work with TeV Z' and WR?

Conditions:

- (i) RH neutrinos must be degenerate in mass to the level of $M_1 M_2 \sim 10^{-10} M$ since h~10^-5;
- (ii) Since there are fast processes at that temperature, the net lepton asymmetry and primordial lepton asym are related by $\eta_B \simeq 10^{-2} \sum \varepsilon_{i\alpha} \, \kappa_{i\alpha}$

$$\eta_B \simeq 10^{-2} \sum_{i} \varepsilon_{i\alpha} \, \kappa_{i\alpha}$$

where κ <1- depends on Z' mediated $e^+e^- \rightarrow NN$ and inverse decay $lH \rightarrow N$

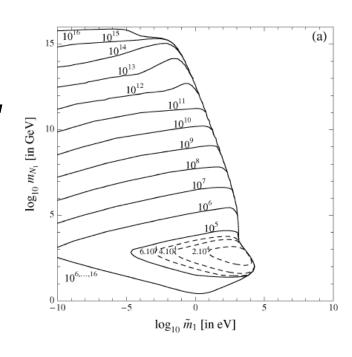

Not clear that a TeV scale Z' is even allowed by baryogenesis due to rapid rates?

Lower bound on Z' mass from leptogenesis

Lower the Z' mass, faster the scattering and

less the efficiency implying a lower limit on Z' mass !!

•(BLANCHET, CHACKO, GRANOR, RNM: ARXIV:0904.2974)

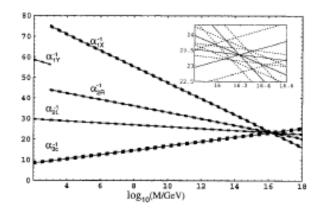


Limits on WR

- Left-right Model: $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$
- New fast processes that erase the lepton asymmetry: $e_R + u_R \rightarrow N + d_R$
- Except when Mw_R > 18 TeV,

(Frere, Hambye and Vertongen)

Sym br. to U(1)_{13R}XU(1)_{B-L} then to SM at TeV-to do resonant lepto.



Unification Prospects for TeV seesaw: An SO(10) possibility

- TeV scale Triplets with B-L=2 hard to unify to SUSY SO(10).
- Both for TeV Z' and WR, unification possible with B-L

=1 doublets breaking $U(1)_{B-L}$; (Deshpande, Keith and Rizzo; 93;

Malinsky, Romao, Valle'05);

This has implications for neutrino mixing:

Double seesaw for Neutrino masses

B-L=1 breaking -> inverse seesaw for neutrino masses

$$\begin{pmatrix}
0 & hv_{wk} & 0 \\
hv_{wk} & 0 & M \\
0 & M & \mu
\end{pmatrix}
\quad m_{v} \cong -m_{D}^{T}M^{-1}\mu M^{-1}m_{D}$$

- Unlike type I, nu-N mixing m_D/M decoupled from neutrino mass- so can be large enhancing Nproduction at LHC.
- Unlike type I, Majorana character of RH N (amount) of like sign dileptons) depends on how large $\frac{\mu}{M}$ is.

 • Unlike type I, $\mu \to e + \gamma$ can be large without susy.
 • Leptogenesis possible for $\frac{\mu}{M} > 10^{-6}$

Testing double seesaw

Can lead to deviations from Unitarity for neutrino mixings <a>s.

Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon Goswami, Ota; Altarelli, Meloni; Malinsky, Ohlsson, Zhang, Xing;)

- Mixing matrix $N=(1+\eta)U$
- -Current limits on $\eta_{\alpha\beta}$: $\eta_{\mu\tau} < 5 \times 10^{-3}$; $\eta_{e\mu} < 0.0001$ on 12-element from Lepton flavor violation.
- Observable oscillation effect at near detector in neutrino factories as well as far detector. $\eta_{\mu\tau} < 10^{-4} \, {\rm attainable} \, \, {\rm from \, SBL \, \, with \, 50 \, \, GeV \, \, E}.$

Conclusion:

- Need to know-Dirac vs Majorana:
- What may we have learnt?
- Majorana nu > seesaw good paradigm!!
 - may explain the origin of matter
- What we need to know?
 - Scale of new physics (e.g. B-L sym.)- GUT vs
 - TeV scale? May give a hint as to whether
 - large mixing is from dynamics or symmetry.
 - mass ordering, theta_13 to understand AF

Large mixing from Dynamics: Simple hierarchy to Double hierarchicy

$$m_v = -m_D \frac{1}{M_v} m_D^T$$
 mD hierarchical in most models:

• A possibility within type I seesaw:
$$m_{v} = -m_{D} \frac{1}{M_{N}} m_{D}^{T} \quad \text{mD hierarchical in most models:}$$
• $m_{v} \sim \begin{pmatrix} \varepsilon_{5}^{n \geq 1} & \varepsilon_{4} & \varepsilon_{3} \\ \varepsilon_{4} & 1 + \varepsilon_{1} & -1 \\ \varepsilon_{3} & -1 & 1 + \varepsilon_{2} \end{pmatrix}$
Not very hierarchical

That means M_N could be "doubly" hierarchical:

(Altarelli, Feruglio, Masina; '03; He, Law, Volkas'08)

A recent example: $m_D = \operatorname{diag}(m_e, m_\mu, m_\tau) \rightarrow$

$$(M_N)_{\rm NH} = \frac{\lambda'}{6p^2m_0} \begin{pmatrix} 4m_e^2 & -2m_e m_\mu & -2m_e m_\tau \\ -2m_e m_\mu & m_\mu^2 & m_\mu m_\tau \\ -2m_e m_\tau & m_\mu m_\tau & m_\tau^2 \end{pmatrix}$$

Hierarchy Dilution by cancellation

Suppose at very high scale, there is a sum-rule:

$$M_{\nu} \cong c(M_d - M_l)$$

• Since at high scale, $m_h \approx m_{\tau}$ most hierarchical term cancels out:

$$M_{d,l} = m_{b,\tau} \begin{pmatrix} \sim \lambda^4 & \sim \lambda^3 & \sim \lambda^3 \\ \sim \lambda^3 & \sim \lambda^2 & \sim \lambda^2 \\ \sim \lambda^4 & \sim \lambda^2 & 1 \end{pmatrix}$$

$$\begin{array}{ccc} \lambda = \text{Cabibbo angle.} \\ \bullet & \text{Sum rule} \end{array} \xrightarrow{} & \mathcal{M}_{\nu} & = m_b c \lambda^2 \begin{pmatrix} \lambda^2 & \lambda^2 & \lambda \\ \lambda^2 & 1 + \lambda & 1 \\ \lambda & 1 & 1 \end{pmatrix}$$

(Bajc, Senjanovic, Vissani; Goh, RNM, Ng)