Super-Kamiokande

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Institute for the Mathematics and Physics of the Universe, U of Tokyo

> Masato Shiozawa for the Super-Kamiokande collaboration

Super-Kamiokande History

inner detector mass: 32kton fiducial mass: 22.5kton

SK-IV commissioning since Sep.-2008

detector calibrations and detector simulation tuning

Solar global and KamLAND

Solar Neutrino Future Prospects in SK

recovered original threshold (SK-III)

discovery of neutrino oscillation

1998, Atmospheric neutrino observation at Super-Kamiokande
deficit of upward going muon (neutrinos)

- electron (neutrino) as is expected
- consistent with pure $\nu\mu \rightarrow \nu\tau$
 - $sin^2\theta_{23} > 0.82$, $5x10^{-4} < \Delta m^2_{23} < 6x10^{-3} eV^2$

NOW: More than 28,000 events have been recorded. Provide evidence and still provide largest statistics

Particle ID and the number of Cherenkov rings

Super-Kamiokande

Run 5704 Event 3551590 98-03-17:07:14:39 Inner: 3397 hits, 7527 pE Outer: 0 hits, 0 pE (in-time) Trigger ID: 0x07 D wall: 1089.6 cm FC e-like, p = 923.2 MeV/c

Super-Kamiokande

Run 3962 Sub 125 Ev 965982 97-05-01:15:32:29 Inner: 2887 hits, 9607 pE Outer: 1 hits, 0 pE (in-time) Trigger ID: 0x03 D wall: 1690.0 cm FC mu-like, p = 1323.6 MeV/c

Charge(pe)

Charge (pe)

.

>15.0 • 13.1-15.0 • 11.4-13.1 9.8-11.4 4.5 3.5 9- 2.6 2- 1.9 1 2 0.8

Electron-like ring (diffused ring)

muon-like ring (sharp edge)

Event category 2 (PC and upu) Particle ID and # of Cherenkov rings are not used. Partially Contained (PC) Upward µ Upward through-going µ

լլ

OD through going PC

.......

լլ

OD stopping PC

......

discrimination of PC stop and through by deposited energy in the outer detector
PC stop is a kind of EC events and

 PC stop is a kind of FC events and energy can be reconstructed. target is rock (water for FC and PC)
different energy scale and detection technique

<u>u</u>

Upward

stopping μ

2 flavor oscillation analysis

zenith angle (SK-I +II+III combined)

L/E analysis (SK-I +II+III)

Zenith analysis

- Use almost all sub-samples, binned by zenith angle

L/E analysis

- Select events with good L/E (Δ (L/E)<70%)
- Binned by L/E
 - Position of the dip $(L/E)^{-1} \sim \Delta m^2$
 - Aim to directly determine Δm^2
 - Do see the dip at L/E~500

Compilation of measurements

$$\begin{split} \Delta m^2{}_{23} &= 2.11^{+0.11}{}_{\text{-}0.19}\text{x}10^{-3} \text{ eV}^2 \ (68\%(\Delta\chi^2=1)) \\ (\text{atm ν: zenith}) \\ \Delta m^2{}_{23} &= 2.19^{+0.14}{}_{\text{-}0.13}\text{x}10^{-3} \text{ eV}^2 \ (68\%) \\ (\text{atm ν: L/E)} \\ \Delta m^2{}_{23} &= 2.43^{+0.13}{}_{\text{-}0.13}\text{x}10^{-3} \text{ eV}^2 \ (68\%) \\ (\text{MINOS, PRL101(08))} \end{split}$$

 $\rightarrow \Delta m^2$: comparable accuracies

sin²2θ > 0.96 (90%(Δχ²=2.7)) (atm v)
sin²2θ > 0.90 (90%) (MINOS)

 \rightarrow sin²2 θ : better by atm v

future: - atm v 1/sqrt(statistics)
- LBLE will be probably better

Search for CC VT events

Signature of CC v, events

- Higher multiplicity of Cherenkov rings
- More μ e decay signals
- Spherical event pattern

Likelihood and neural network analysis

Sep.-2009 @ Erice school 2009

(BG (other v events) ~ 130 ev./kton·yr)

Zenith angle dist. and fit results

Likelihood analysis

OLD (to be upda<u>ted)</u>

NN analysis

Global picture of oscillation effects

new sub-samples (SK-I +II+III combined)

θ13 search (SK-I +II+III)

Current constraint on θ_{13} (SK-I +II+III) $\Delta m^{2}>0$

No evidence for nonzero θ_{13} so farCHOOZ reactor: $sin^2\theta_{13} < 0.04 @ 90\%$ CLSK atm-v: $sin^2\theta_{13} < 0.066$ (normal hierarchy)< 0.131 (inverted hierarchy)</td>LBLE K2K: $sin^2\theta_{13} < 0.075$ PRL93(04)MINOS: $sin^2\theta_{13} < 0.073$ PRL101(08)

Significance for nonzero θ_{13}

Positive signal for nonzero θ_{13} can be seen if θ_{13} is near the CHOOZ limit and $s^2\theta_{23} > 0.5$

Discrimination of θ_{23} octant

SK-I+II+II 0.441<sin²θ₂₃<0.561(68%)

s²2θ₁₂=0.825 s²θ₂₃=0.4 or 0.6 s²θ₁₃=0.00~0.04 δcp=45° Δ m²12=8.3e-5 Δ m²23=2.5e-3

With 20yrs SK, discrimination may possible for sin²θ₁₃>0.02

More statistics will increase power.

Discrimination of mass hierarchy (1)

$1.8 \text{ Mton} \cdot \text{yr} = 3.3 \text{yr} \text{ HK}$

True : normal mass hierarchy

Discrimination of mass hierarchy (2)

$1.8 \text{ Mton} \cdot \text{yr} = 3.3 \text{yr} \text{ HK}$

True : inverted mass hierarchy

δcp sensitivity

s²θ₂₃=0.5

sin²013

80yrs SK ~ 4yrs HK

CP phase could be seen if θ 13 is close to the CHOOZ limit.

Megaton scale water Cherenkov detectors

Physics goals

- CPV with accelerator v (LBLE)
- proton decay searches
 ~10³⁵ years for p→e⁺π⁰
- precise meas. of atmospheric v
 - δ , θ_{13} , mass hierarcy (sin² θ_{13} >~0.01)
 - θ23 octant
- <u>supernova v</u>
 - mechanism of stellar collapse
 - mass hierarchy?
- <u>solar v</u>
 - day-night flux (matter effect)
 - **Hep** ν

Summary

- Super-K is now back on solar v business
 - Aiming to reach 4 MeV (new electronics, lower BG, better reconstruction, smaller systematics)
- Atm-v is providing information on $v\mu \rightarrow v\tau$
 - Δm²₂₃= 2.19^{+0.14}-0.13x10⁻³ eV² (68% by L/E study)
 - sin²2θ₂₃>0.96 @ 90% CL
 - 2.4 σ level $v\tau$ significance
- LBLE era
 - MINOS, T2K, Nova, LBLE with Mton-size...
 - Atm-ν could also give us information on θ₁₃, octant of θ₂₃, mass hierarchy, and CP phase in future (especially in the case of sin²θ₁₃ >~0.01)

Gadolinium test tank (under construction)

Hall excavation (Sep.-2009 to Dec.)200ton tank with PMTs

Test the effect of Gd on light attenuation length, purification method, corrosion of detector materials...

