Prospects of Reactor v Oscillation Experiments

F.Suekane RCNS, Tohoku Univ.

@Erice School 23/09/2009

Contents

- * Motivation
- * Physics of Neutrino Oscillation
- * Accessible Parameters of Reactor Neutrinos
- * Possibilities of Reactor Neutrinos
 - @1st Δm_{13}^2 Oscillation Maximum
 - @2nd Δm^2_{13} O.M.
 - @1st Δm_{12}^2 O.M.
 - @2nd Δm_{12}^2 O.M.
- * Summary

An exciting time is just around the corner

What reactor experiments could do next?

Reactor v experiments are cost-effective way to get important information.

What we measure by v Oscillation

Existence of v Oscillation is an evidence of finite $A_{\mu e}$

Transition amplitudes can be determined together with absolute mass.

Purpose of v Oscillation experiment

Physics of v oscillation is to measure the flavor transition amplitudes (<= experimentalist) and think of its origin (<= theorist).

Our Current Knowledge $|m_3^2 - m_2^2| \sim 2.6 \times 10^{-3} \text{eV}^2$, $(m_2^2 - m_1^2) \sim 8 \times 10^{-5} \text{eV}^2$ $U_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & s_{13}e^{i\delta} \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix} |s_{13}| < 0.2$ If $m_3 > m_2 > > m_1 \sim 0$, \mathbf{v}_{μ} \mathbf{v}_{μ} $v_{ au}$ v_{e} ν_{e} $\mu_e \sim 3 \text{meV}$ $\mu_{\tau} \sim 30 \text{meV}$ $\mu_{\mu} \sim 30 \text{meV}$ ν_{μ} $v_e v_{\tau}$ \mathbf{v}_{μ} ν_{τ} $A_{eu} \sim (30 s_{13} e^{i\delta} + 3) \text{meV}$ $A_{e\tau} \sim (30 s_{13} e^{i\delta} - 3) \text{meV}$ $A_{\mu\tau} \sim 20 \text{meV}$

(charged lepton=mass eigenstate)

Reactor neutrino

v are produced in β-decays of fission products. ~ $6 \times 10^{20} \overline{v}_e / s / reactor$

Accessible Oscillations by Reactor v

Physics @ 1st Δm_{13}^2 Maximum (L~1.5km) ; θ_{13}

$$P_R(\overline{\nu}_e \rightarrow \overline{\nu}_e) \approx 1 - \frac{\sin^2 2\theta_{13}}{\sin^2 \Delta_{31}}$$

Future v experiments strongly depends on θ_{13} Precise measurement of θ_{13} is very important.

Parameter	Measurement Method
δ_{CP}	$\left[P_A(\nu_{\mu} \rightarrow \nu_e) - P_A(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_e)\right]_{@\Delta_{23}} \sim 0.1 \underline{\sin 2\theta_{13}} \sin \delta$
	$P_A (v_{\mu} \rightarrow v_e)_{@\Delta 23} \sim 0.5 \sin^2 2\theta_{13} \pm 0.05 \sin 2\theta_{13} \sin \delta$
θ_{23} degeneracy	$\left[P_A(\nu_{\mu} \rightarrow \nu_e) + P_A(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_e)\right]_{@\Delta_{23}} \sim 2\sin^2\theta_{23}\sin^22\theta_{13}$
Mass Hierarchy	$\left[P_A(\nu_{\mu} \rightarrow \nu_e; L) + P_A(\nu_{\mu} \rightarrow \nu_e; L')\right]_{@\Delta_{23}} \sim sign(\Delta m_{23}^2)(L' - L)sin^2 2\theta_{13}$
	$P_R(\overline{\nu}_e \to \overline{\nu}_e)_{@\Delta_{12}} \sim 1 - 0.5 \sin^2 2\theta_{13} \left(\sin^2 \Delta_{31} + \tan^2 \theta_{12} \sin^2 \Delta_{32}\right)$

Results: within 2~5years

Complementarity of Reactor-Accelerator θ_{13} measurement

Settlement of θ_{23} Degeneracy

 3^{rd} Generation; More Precise θ_{13}

For higher statistics, θ_{13} cam be measured by energy spectrum distortion and $\delta \sin^2 2\theta_{13} < 0.01$ is possible

Quick Access to δ_{CP}

If θ_{23} degeneracy and Mass Hierarchy are solved, only δ remains to be solved.

Combination of high precision Reactor- θ_{13} and Accelerator v_e appearance may determine non-0 δ before anti-neutrino mode operation. 090923 F.Suekane@ERICE09

Parameter region to determine non-0 δ

If $\sin^2 2\theta_{13} > 0.05$ there is a possibility to determine non-0 δ

Physics @ Δm_{13}^2 2nd Maximum (L~5km) ($|\Delta m_{13}^2|$ measurement)

F.Suekane@ERICE09

Physics @ $1^{st} \Delta m_{12}^2$ Maximum

$$P_R(\overline{\nu}_e \rightarrow \overline{\nu}_e) = 1 - \begin{cases} \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ +\sin^2 2\theta_{13} \cos^2 \theta_{12} (\sin^2 \Delta_{31} + \tan^2 \theta_{12} \sin^2 \Delta_{32}) \end{cases}$$

F.Suekane@ERICE09

Determination of Mass Hierarchy@50km

Principle

Petcov et al., Phys. Lett. B 533, 94 (2002) S.Choubey et al., Phys. Rev. D 68,113006 (2003) J. Learned et al., hep-ex/062022 L.Zhan et al., hep-ex/0807.3203 M.Batygov et al., hep-ex/0810.2508

Ripple
$$\propto \sin^2 2\theta_{13} \left(\sin^2 \Delta_{31} + \tan^2 \theta_{12} \sin^2 \Delta_{32} \right)$$

It is essential that θ_{12} is not maximum $(\tan^2 \theta_{12} \sim 0.4)$ Fourier Analysis => Power Spectrum Peaks at $\omega = |\Delta m_{31}^2|$, $|\Delta m_{32}^2|$

The smaller peak is $|\Delta m_{32}^2|$ and larger peak is $|\Delta m_{31}^2|$,

$$\Rightarrow |\Delta m_{31}^2| > |\Delta m_{32}^2| : \text{Normal Hierarchy}$$

$$\Rightarrow |\Delta m_{31}^2| < |\Delta m_{32}^2| : \text{Inverted Hierarchy}$$

FIG. 2: Fourier power spectrum with modulation in units of eV^2 and power in arbitrary units on the logarithmic scale. The peak due to Δ_{31} with $\sin^2(2\theta_{13})=0.1$ is prominent.

FIG. 3: Neutrino mass hierarchy (normal=solid; inverted=dashed) is determined by the position of the small shoulder on the main peak.

Simulation of power spectrum

If $\sin^2 2\theta_{13}=0.05$, 3kton x24GW x5yr, Mass Hierarchy can be determined with 1σ significance.

L.Zhan et al.=> Mass Hierarchy could be determined if $\sin^2 2\theta_{13}$ >0.005. 090923 F.Suekane@ERICE09 Merit & Issues of this method.

* Need not to know absolute $|m_{23}^2|$ so precisely. It is enough only to separate two peak positions.

DoubleChooz-50

RENO-50

- L~50km experiment may be a natural extension of current Reactor- θ_{13} Experiments
- * θ_{13} detectors can be used as near detector * Small background from other reactors.

Physics @ Δm_{12}^2 2nd Maximum(L~150km)

Summary

= Current =

 θ_{13} : DoubleChooz, RENO, Dayabay are going to start in 2010. $\delta \sin^2 2\theta_{13} = 0.01 \sim 0.03$ in a few years.

= Future =

- * L~1.8km, High Precision θ_{13} ; M~100ton x 24GW_{th} => $\delta \sin^2 2\theta_{13} < 0.01$
 - → θ_{23} Degeneracy with accelerator
 - \rightarrow early sin δ detection with accelerator
- * L=50km, M~3Kton x 24GW_{th},
 → High Precision θ₁₂;
 → Mass hierarchy determination

*L=180km 20Kton KamLAND???

It is important to discuss about the future strategy taking into account the reactor-accelerator complementarity after the 1st phase θ_{13} measurements.

Back up slides

Relation of mass, mixing & transition amplitudes

$$P_{Accel}(\nu_{\mu} \rightarrow \nu_{e}) \oplus P_{Accel}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \oplus P_{\text{Re}\,actor}(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e})$$

Reactor θ_{13} helps to pin down parameters

