First results of the ANTARES Neutrino Telescope

ERLANGEN CENTRE For Astroparticle Physics

Thomas Eberl for the ANTARES collaboration 32nd International School of Nuclear Physics Erice Sept. 17th, 2010

Friedrich-Alexander-Universität Erlangen-Nürnberg

The High-Energy Universe

Supernova remnants (SN1006, optical, radio, X-ray)

Active Galactic Nuclei (artist's view)

Microquasars (artist's view)

Gamma-ray Bursts (GRB 080319B, X-ray, SWIFT)

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Messengers of the High-Energy Universe

Cosmic ray spectrum

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

High-energy particle production in the universe

- Accelerator (source)
- Shock fronts (Fermi acceleration)
- Strong magnetic fields up to 10¹⁵ Gauss (pulsars, magnetars)
- Beam dump (secondary particle production)
- Interaction with photon field, matter, interstellar medium
- Protons: pion decay

 $\begin{array}{cccc} p + p(\gamma) \rightarrow \pi^{\pm} + X & p + p(\gamma) \rightarrow \pi^{0} + X \\ & & & \downarrow & \mu + v_{\mu} & & \downarrow & \gamma + \gamma \ (\text{TeV}) \\ & & & & \leftarrow & e + v_{\mu} + v_{e} \end{array}$

Electrons: inverse Compton-scattering of photons
 e+ v → e + v(TeV)

.

Why neutrino astronomy?

- Neutrinos point back to the source
- Neutrinos travel cosmological distances
- Neutrinos escape from optically thick sources
- Neutrinos are a clear sign for hadron acceleration
- Neutrinos provide complementary information to gamma-rays and protons

Physics with neutrino telescopes

- Galactic sources

 (Supernova remnants, Binary systems, Pulsar Wind Nebulae . . .)
- Extra-Galactic sources (Gamma-ray Bursts, Active Galactic Nuclei ...)
- Dark Matter
 (WIMPs)
- Cosmogenic neutrinos (GZK, Top-down, . . .)
- Supernovae (MeV neutrinos)
- Neutrino oscillations (atmospheric neutrinos 10 100 GeV)
- Cosmic-ray anisotropy (atm. muons)
- Exotic physics

(Lorentz violation, monopoles, . . .)

Principle of neutrino detection

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Neutrino Candidate

Reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines:

2010 8

Sky coverage

0.5 π sr instantaneous common view 1.5 π sr common view per day

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

The ANTARES Collaboration

27 institutes in 7 European countries

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

ANTARES in the Mediterranean

La Seyne-sur-Mer, near Toulon, France

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

ANTARES

- 12 Lines (885 PMTs)
- Completion May 2008
- Instrumented volume: ~0.01 km³ •

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

ANTARES deployment

Calibration (selection)

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Detector positioning

- Acoustic system
 - 1 emitter(+ receiver)

at each line socket

- 5 receivers along each line
- Compass and Accelerometer
 - 1 Compass at each storey
 - 1 Acc. at each storey

Accelerometer: tilt

15

15

20

25

LANGEN CENT OR ASTROPART

r(m)

Z(m)

Detector positioning

typical line shape

mostly coherent movement of lines

Position monitoring for PMTs

- Precision of positioning: $\Delta x < 10 \text{ cm}$
- Monitoring of the positioning with laser pulses

 \rightarrow Precision ~0.5 ns = 10 cm

Background

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Optical Background

Optical background due to ⁴⁰K-decay and bioluminescense

- Typical rate per PMT 60-120 kHz
- Additional short bursts and periods with higher rates

Bioluminescent Sources

- Bacteria: steady baseline source of light (30kHz in 10" PMT)
- Macro-organisms: short flashes (up to MHz)

e.g.

large colonial organisms such as pyrosomes (megaplankton)

size range: 0.2 - 2000 mm

(J. Craig, Univ. Aberdeen, VLVNT 08)

Particle background: atm. muons and neutrinos cosmic rays р background cosmic atmosphere Vμ Vμ l u р

- Flux from above dominated by atmospheric muons
- Neutrino telescopes optimised to be sensitive to neutrinos from below

Selected Results

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Reconstructed muon tracks: angular distribution

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Muon flux:depth-intensity relation with 5 Lines

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Scrambled sky map of 1000 neutrinos

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Point source sensitivity

5-line data 2007, **preliminary**

Increased sensitivity for full detector

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Dark matter search

5-line data 200768 days detector live time

Competitive with direct detection for SD cross section

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010

Observation of induced electromagnetic showers from muon tracks

Analysis Technique:

Projection of "late" photons onto reconstructed muon track

Energy estimator

R

Number of prompt and late PMT signals

Number of all PMTs contributing to the event

Energy estimator

 $R = \frac{\text{Number of prompt and late PMT signals}}{\text{Number of prompt and late PMT signals}}$

Number of all PMTs contributing to the event

Upper limit on diffuse flux of HE ν

Summary and Outlook

- ANTARES is continuously taking data
- ANTARES complements the sky coverage of IceCube
- ANTARES has a broad physics program
- ANTARES determined sensitive upper limit on HE diffuse ν flux
- ANTARES paves the way for KM3NeT

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010