Neutrino Physics with BOREXINO

A. lanni I.N.F.N. at LNGS

International School of Nuclear Physics 32° Course Particle and Nuclear Astrophysics Erice Sept 16-24, 2010

Outline

- BOREXINO: the detector
- Solar neutrinos
- Electron anti-neutrinos
- Neutrinos from core collapse Supernovae
- Conclusions

Borexino Collaboration

LNGS, March 5th 2008

The BOREXINO detector

BOREXINO: view of the Inner Detector

The Gran Sasso Underground Laboratory

Borexino Liquid Scintillator

PC $[C_9H_{12}] + 1.5g/l \text{ of PPO}$ Decay time ~ 3ns

BOREXINO Ancillary Facilities

- <u>Counting Test Facility</u>
- Purification plants for PC
 - distillation column
 - water extraction column
 - stripping column
- Purification plant for Master Solution
 - •Steering water extraction
 - •Distillation column
 - •Stripping column
- •Filling stations
- Loading/Unloading plant

BOREXINO Filling Strategy

What do we measure?

- **Timing**: time distribution of hit PMTs
 - This define the vertex position of scintillation signals
- Energy: calorimetric measurement of energy released by neutrinos or backgrounds

Muons detection

- Muons are identified by
 - the outer (Cherenkov light) 99.5% eff.
 - the inner detector (pulse shape analysis) ≥99.9% eff
- Muons can produce neutrons and cosmogenic radioactive isotopes on ¹²C
- Muon rate in BOREXINO: ~0.05 μ /s

Calibration measurements

Three calibration campaigns with

- α , β , γ and n sources
- One external ²⁰⁸Tl source

Source deployed on-axis and off-axis

Careful study of:

- Scintillator light response
- Energy scale 2-3% in FV
- Position reconstruction algorithm 2% in FV

Data reduction

Solar Neutrinos

Looking at the Sun through neutrinos

- The Sun shines by burning H fuel 4p -> ⁴He+2e⁺+2v_e+(24.69+2·1.022)MeV
- Electroweak processes in the core of the Sun produce electron neutrinos
- Neutrinos time scale ~ 500
- Photons time scale takes ~10⁴-10⁵ yr to reach the surface

Solar Neutrinos Sources: pp chain

See C. Broggini at this meeting for details on astrophysical factors measurements in LUNA

Solar Neutrinos Sources: CNO chain

Solar Standard Model conflict with helioseismology

Neutrino predictions come from the SSM. However, recently a large disagreement With some observations has been found

Conflict might be due to some wrong basic assumption in the SSM

Solar Neutrino Spectrum - BPS08(HZ)

k unknown parameters out of n>k

Solar Neutrino Measurements

Experiment	Sources contributing to rate	R _{exp} / R _{Th}
		L ^{i v} exp J
Homestake	⁷ Be(13.1%)+pep(2.7%)+	0.31±0.03 CC
E _{th} =0.814 keV	CNO(2.4%)+ ⁸ B(81.8%)	[2.56±0.23 SNU*]
GALLEX/GNO/SAGE	pp(55%)+ ⁷ Be(28.3%)+	0.53±0.05 CC
E _{th} =0.233 keV	pep(2.3%)+	[67.6±5.12 SNU]
	CNO(3.4%)+ ⁸ B(11%)	
Super-Kamiokande	⁸ B(100%)	0.451±0.017 ES
E _{th} =5 MeV		
SNO	⁸ B(100%)	0.28±0.01 CC
E _{th} =5 keV		0.88±0.05 NC
BOREXINO	⁷ Be(100%)	0.65±0.07 ES
E _{th} =0.2 keV		[49±5 cpd/100ton]

* 1SNU = 10⁻³⁶ s⁻¹

Solar Neutrinos + Reactor Neutrinos global fit

Oscil. parameters	Best-fit [10 ⁻⁵ eV ²]	3σ
δm_{12}^{2}	7.6	7.1-8.3
$sin^2\theta_{12}$	0.32	0.26-0.4

Why do we study solar neutrinos today?

- Probe neutrino propagation properties through high density matter
- Probe the physics of stars
 - Neutrinos vs photons luminosity
 - pp vs CNO contribution to solar energy
 - SSM CNO predicts <1%
 - Metallicity, opacity and other properties

Survival probability for solar neutrinos inside the Sun

Solid line: $sin^22\theta=0.87$ and $\Delta m^2=7\times 10^{-5}$ eV²

Dashed line: $sin^22\theta$ =0.005 and Δm^2 =5×10⁻⁶ eV²

Solar neutrino signal in BOREXINO

It is a matter of background

- ⁷Be rate ~50 cpd/100ton
- 1ppt ²³²Th = 4.06×10⁻⁶ Bq/kg
- 1ppt ²³⁸U = 12.4×10⁻⁶ Bq/kg
- Assuming 100% eff. for α/β discrimination and for removing correlated decays (Bi-Po fast $\beta-\alpha$ decays), one needs contaminations at the level of 10⁻¹⁶ g/g to have ~ 50 cpd/100ton from U and Th
- S/B \approx 1 with a purity of ~10⁻⁴ μ Bq/kg

Moreover,

 ⁸⁵Kr (Q_β=0.687MeV), ³⁹Ar(Q_β=0.565MeV), ²¹⁰Bi(Q_β=1.162MeV) at 1cpd/ 100tons will give 1.5 cpd/100tons in [0.25,0.8] MeV

Irreducible Background Sources

- ¹⁴C (Q_β=0.156 MeV) : ≈7 Hz [0.1,0.2]MeV
- Cosmogenic [see T. Hagner et al. Astrop. Phys. 14 (2000) 33]

Radioactive isotopes which are produced by muons and their secondary shower particles when passing through a scintillator (¹²C) target^a

	Isotopes	T _{1/2}	$E_{\rm max}$ (MeV)
β-	¹² B	0.02 s	13.4 (β ⁻)
	¹¹ Be	13.80 s	11.5 (β ⁻)
	¹¹ Li	0.09 s	20.8 (β ⁻)
	⁹ Li	0.18 s	13.6 (β ⁻)
	⁸ Li	0.84 s	16.0 (β ⁻)
	⁸ He	0.12 s	10.6 (β ⁻)
	⁶ He	0.81 s	3.5 (β ⁻)
β ⁺ , EC	¹¹ C	20.38 min	0.96 (β ⁺)
	¹⁰ C	19.30 s	1.9 (β ⁺) (+0.72
			MeV γ, 98.53%)
	°C	0.13 s	16.0 (β ⁺)
	⁸ B	0.77 s	13.7 (β ⁺)
	⁷ Be	53.3 d	0.478 (γ, 10%)

Isotopes	σ in µbarn for E_{μ} (GeV)
	100
^{ri} C ⁷ Be	576 ± 45 127 ± 13
¹¹ Be ¹⁰ C	<1.22 (68% CL) 77.4 ± 4.9
⁸ Li	2.93 ± 0.80
⁶ He	10.15 ± 1.0
⁸ B	4.16 ± 0.81
°C	
⁹ Li + ⁸ He	

^a Of particular relevance for BOREXINO are the isotopes ⁷Be, ¹¹C, ¹⁰C and ¹¹Be. Radio unstable isotopes which emit β neutron cascades as ⁸He, ⁹Li and ¹¹Li are important for antineutrino spectroscopy.

Borexino Expected Solar v Spectrum

Spectrum with irreducible backgrounds

$R_{7Be}(\Delta m_{12}^2, \theta_{12})/R_{7Be}^{SSM}$

Some features of the observed spectrum

²¹⁰Po in Borexino

- Chain: ²¹⁰Pb(β;τ=32yr) ->²¹⁰Po(α;τ=199.6days)->²¹⁰Bi
- ²¹⁰Po not in equilibrium
- not clear origin (PPO, particulate etc)

Measurement of ⁷Be solar neutrinos

Free parameters: LY, ⁷Be, ¹¹C, ⁸⁵Kr, CNO+²¹⁰Bi, ²¹⁰Po

⁷Be : 49 \pm 3_{stat} \pm 4_{sys} cpd/100tons

Systematics: 6% energy scale, 6% Fiducial Volume

No oscillation hypothesis rejected at 4σ

```
<sup>11</sup>C : measured/expected \approx 1.6
```

⁸⁵Kr : consistent with delayed coincidences meas.

²¹⁰Bi+CNO/CNO \approx 4

 $\Phi(^{7}\text{Be}) = (5.18 \pm 0.51) \times 10^{9} \text{ cm}^{-2} \text{ s}^{-1}$

R_{7Be}^{Borexino}/**R**_{7Be}^{SSM}

⁸B neutrinos in Borexino

 Measure ⁸B neutrino spectrum on ES interactions in 100 tons FM above 3 MeV

⁸B solar neutrino measurements

Measurement of the Electron Neutrino Survival probability

Day-Night asymmetry for ⁷Be rate

$$ADN = \frac{N - D}{(N + D)/2} = 0.007 \pm 0.073 \,(stat)$$

For more details see M. Buizza at this meeting

Probing the energy generation: SSM w/o the luminosity constraint

- Before Borexino:
 - $f_{pp} = 1.34^{+0.25}_{-0.38}$ - $f_{Be} = 0.28^{+0.74}_{-0.28}$ w/ CNO fixed
 - $-f_{Be}=0.18^{+1.0}$ -0.18
 - $L_{v}/L_{sun} = 1.3 \pm 0.3$
- After Borexino:
 - $f_{Be} = 1.02 \pm 0.10$
 - $-f_{pp}=1.04^{+0.16}$ -0.19
 - $L_{CNO} < 8\% (3\sigma)$
 - $-L_v/L_{sun}$ =1.0±0.2

f_{Be} **poorly determined**

Probing the SSM w/ the luminosity constraint

Tagging pep/CNO neutrinos

Borexino coll: CNO and pep neutrino spectroscopy in Borexino: measurement of the deep-underground production of cosmogenic ¹¹C in an organic liquid scintillator, **Phys. Rev. C 74, 045805 (2006).**

Electron anti-neutrinos

The Earth shines in electron anti-neutrinos (geo-v)

Decay	E _{max} [MeV]	Q [MeV]	Q - <e<sub>√> [MeV]</e<sub>	kg ⁻¹ s ⁻¹	W kg⁻¹
²³⁸ U-> ²⁰⁶ Pb+8α+6e⁻+ 6 v _e	3.25	51.7	47.7	7.41×10 ⁷	0.94×10 ⁻⁴
²³² Th-> ²⁰⁸ Pb+6α+4e⁻+ 4 √ _e	2.25	42.7	40.4	1.62×10 ⁷	0.26×10 ⁻⁴
⁴⁰ K-> ⁴⁰ Ca+e⁻+⊽ _e (89%)	1.311	1.311	0.59	2.30×10 ⁸	0.22×10 ⁻⁴
⁴⁰ K + e -> ⁴⁰ Ar+e ⁻ +v _e (11%)	0.044	1.505	1.461	0.28×10 ⁸	0.67×10 ⁻⁵

How many geo-v?

We need to know how much U, Th and K on Earth

Topology of the anti-v event

The Earth's Crust

- We know for a fact that the Crust contains Heat Producing Elements (HPE)
- Empirical determination of HPE abundances in the crust
- We use a 2°×2° mesh model with different layers (UC, MC, LC) CRUST 2.0 model
 200 km scale
- $m_{\rm C}({\rm U}) \sim 0.3 \times 10^{17} \, {\rm kg}$
- $L_v(U) \sim 2 \times 10^{24} \, \text{s}^{-1}$
- H_v(U) ~ 3 TW

A reference model: the Bulk Silicate Earth

- Earth global composition from chondritic meteorites
- Use geochemical arguments to account for loss and fractioning during planet formation
- Obtain composition of primitive mantle before crust formation
- BSE gives total m(U) and a(Th):a(U):a(K)~4:1:12000

•
$$m_{BSE}(U) \sim 0.8 \times 10^{17} \text{ kg}; m_{Mantle}(U) \sim m_{BSE}(U) - m_{Crust}(U)$$

Geo-v luminosity and flux

 $L_v(SN_{electron anti-v}) \sim 3 \times 10^{57} \text{ s}^{-1}$

$$\phi_{geo-\nu}^{eff} \sim \langle P_{ee} \rangle \frac{L_{geo-\nu}}{4\pi R_{\oplus}^2} \sim 4 \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

Detection of geo-v

- Golden channel: inverse-beta decay
 - Strong tagging in massive Liquid Scintillators with prompt and delayed signals
 - Threshold: 1.806 MeV
 - Only U and Th geo-v can be detected
- Running experiments

- KamLAND(since 2005) and Borexino(since 2010)

Spectroscopy of geo-v signal

Geo-v as a probe of the Earth's interior

Goals of geo-v observations

- What is the fraction of radiogenic heat on Earth
 - Total heat from the Earth ~ 46 TW
 - BSE predicts about ~40% from HPE
- What is the abundance of the Heat Producing Elements
- How much U and Th is in the mantle
- Any contribution from the Core?

Backgrounds

1. Anti-neutrinos from reactors

2. Possible sources of fake anti-v events (prompt + delayed):

- Background induced from (α,n) and (γ,n) interactions
 - ✓ Mainly from ${}^{13}C(\alpha,n){}^{16}O$
- ✓ Muons
 - ✓ β -n emitters such as ⁹Li and ⁸He
 - ✓ High energy neutrons
- ✓ Accidental coincidences
 - ✓ Need high radiopurity

Reactors in the World

Reactor anti-v's with Borexino

Muon-induced Backgrounds

Summary of Backgrounds for the case of Borexino

Exposure: 252.6 ton-year

10% deadtime included comes from 2s veto to remove cosmogenic background

Detected 21 anti-v events

Source	Background
	$[\text{events}/(100 \text{ton} \cdot \text{yr})]$
⁹ Li- ⁸ He	$0.03 {\pm} 0.02$
Fast <i>n</i> 's (μ 's in WT)	< 0.01
Fast <i>n</i> 's (μ 's in rock)	< 0.04
Untagged muons	$0.011 {\pm} 0.001$
Accidental coincidences	$0.080 {\pm} 0.001$
Time corr. background	< 0.026
(γ,n)	< 0.003
Spontaneous fission in PMTs	$0.0030 {\pm} 0.0003$
(α, n) in scintillator	$0.014{\pm}0.001$
(α, n) in the buffer	< 0.061
Total	$0.14{\pm}0.02$

Expect: 2.5^{+0.3}_{-0.5} geo-v/(100ton-year)

Best-fit parameters from likelihood analysis

Summary of geo-neutrino measurements

Experime nt	Reference	Geoneutrino events	Geoneutrino flux for U [10 ⁶ cm ⁻² s ⁻¹]	Predicted flux for U [10 ⁶ cm ⁻² s ⁻¹]
KamLAND (2005)	Nature 436, 499	25 ⁺¹⁹ -18	5.6+4.3-4.0	3.7 ⁺² -1.6
KamLAND (2008)	PRL 100, 221803	73±27	4.2±1.6	3.7 ⁺² -1.6
Borexino (2010)	PLB 687, 299	9.9+4.1(+14.6) -3.4(-8.2)	7.1 ^{+2.9(+10.6)} -2.4(-5.8)	4.2 ^{+2.1} -1.9
KamLAND (2010)	Neutrino 2010	106 ⁺²⁹ -28	4.3±1.2	3.7 ⁺² -1.6

Combined analysis of geoneutrino observations: KamLAND2008 + Borexino2010

- The time of multi-experiment geo-v observations and global analysis has come (see Fogli, Lisi, Palazzo, Rotunno, arXiv: 1006.1113)
- Free parameters: oscill. pars + {R_{BX}(U), R_{BX}(Th), R_{KL}(U), R_{KL}(Th)}
- Marginalize oscill. pars

✓ 4 d.o.f.
 ✓ Use R_{BX}(Th)/R_{BX}(U) = R_{KL}(Th)/R_{KL}(U) : 3 d.o.f

TABLE II: Best fits and 1σ ranges from the data analysis with degrees of freedom $N_D \leq 4$. Event rates R are expressed in TNU. Derived or fixed numbers are given in brackets.

N_D	$R(Th + U)_{KL}$	(Th/U) _{KL}	$R(Th + U)_{BX}$	(Th/U) _{BX}
4	$36.8^{+16.2}_{-16.1}$	$25.9^{+\infty}_{-22.9}$	$66.9^{+27.3}_{-23.8}$	$2.7^{+20.2}_{-2.7}$
3	$41.3^{+14.0}_{-12.6}$	$9.1^{+23.5}_{-7.4}$	$63.0^{+26.0}_{-24.0}$	$\left[9.1^{+23.5}_{-7.4}\right]$
2	$45.1^{+11.8}_{-11.2}$	$9.6^{+33.7}_{-7.6}$	$\begin{bmatrix} 51.7^{+13.6}_{-12.9} \end{bmatrix}$	$\left[9.6^{+33.7}_{-7.6}\right]$
1	$47.7^{+11.2}_{-11.2}$	[3.9]	$[54.9^{+12.9}_{-12.9}]$	[3.9]

Neutrinos from SN in BOREXINO

Stellar collapse and ν emission

4 phases:

- Infall: free-fall time scale: $(3\pi/32G\rho)^{1/2} \sim 100ms$
- Falling material on inner stiff core and bounce
 - Shock wave in outer core
 - Early emission of v_e : e⁻p -> n v_e

• Accretion and delayed shock revival ~ 500ms-

- $-e^+ + n \rightarrow p + anti-v_e$
- $e^+ + e^- \rightarrow v_i + anti v_i$
- Cooling ~10s
 - $-e^+ + n \rightarrow p + anti-v_e$ and $e^- + p \rightarrow n + v_e$
 - $-e^++e^->v_i+anti-v_i$

LATE THERMAL EMISSION

Neutrino Luminosities

SN Neutrino Oscillations

$$F_{e}^{0} \rightarrow F_{e} = P_{ee}F_{e}^{0} + P_{\mu e}F_{\mu}^{0} + P_{\tau e}F_{\tau}^{0}$$

$$F_{e} = P_{ee}F_{e}^{0} + (1 - P_{ee})F_{x}^{0} \text{ with } F_{x}^{0} = F_{\mu}^{0} = F_{\tau}^{0}$$

$$2F_{x} + F_{e} = 2F_{x}^{0} + F_{e}^{0}$$

For normal hierarchy with
$$\theta_{13} > 1^{\circ}$$

 $F_{\overline{e}} = \cos^2 \theta_{12} F_{\overline{e}}^0 + \sin^2 \theta_{12} F_{\overline{x}}^0 \approx 0.7 F_{\overline{e}}^0 + 0.3 F_{\overline{x}}^0$
 $F_e = \sin^2 \theta_{13} F_e^0 + \cos^2 \theta_{13} F_x^0 \approx F_x^0$

Galactic SN vs distance to the Sun

Detection channels

CC	NC	ES
$v_e + n \rightarrow e^- + p$	$v + p \rightarrow v + p$	$v_x + e^- \rightarrow v_x + e^-$
$\overline{v}_e + p \rightarrow e^+ + n$	$v + (A,Z) \rightarrow v + (A,Z)^*$	
$\overline{v}_e + (A,Z) \rightarrow e^+ + (A,Z-1)$	$\overline{v} + (A,Z) \rightarrow \overline{v} + (A,Z)^*$	
$v_e + (A,Z) \rightarrow e^- + (A,Z+1)$	$v + (A,Z) \rightarrow v + (A,Z)$	

Cross-sections for a LS detector

Expected events in Borexino

	No oscillations	Oscillations NH	Oscillations IH
Golden ch.	67	78	101
<e> for golden ch. [MeV]</e>	25	30.5	39
CC on ¹² C-> ¹² B CC on ¹² C-> ¹² N	2 0.5	3 9	6 6
ES	5	5	5
NC on ¹² C	9 + 8(anti-v)		
νρ	64		

The v+p channel: measurement of T_x

- The golden ch. gives the temperature of anti-v_e
- This NC ch. can give the temperature of v_x
- Due to quenching only the contribution from $\nu_{\rm x}$ can be measured

Events
$$\propto \left(4\frac{E_B}{6}\right)\frac{\langle\sigma\rangle}{T_x}$$

Spectrum of recoiled protons
 $\int_{0}^{0} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma}$

First proposed by J. Beacom et al., PRD66:033001, 2002

Proton quenching in the neutrino-proton interaction

- Measure proton quenching in the LS
- Make use of AmBe source calibrations

Conclusions

Conclusions on solar neutrinos

- First measurement of ⁷Be solar neutrino flux performed at 10% level
- First ⁸B solar ν detection in liquid scint. (16% at present)
- P_{ee} measured at low and high energy : 2σ effect at present
- Coming next :
 - Reduced systematic error at 5%
 - tagging of cosmogenic background to aim to detect pep/CNO neutrinos even with a large uncertainty
- Use future measurement to solve conflict between SSM and helioseismology
 - Use correlations
 - Solve inverse problem

Conclusions from geo-v observations

1. First observation of geo-neutrinos in Borexino (4.2 σ)

- 1. Large signal-to-noise ratio
- 2. Results limited ONLY by present statistics
- 2. First measurement of electron anti-neutrino disappearance on a base line of ~1000km (2.9 σ) from Borexino
- 3. Combined analysis (KamLAND2008+Borexino2010) at present gives
 - 1. 5σ evidence
 - 2. At 1σ hint for a mantle contribution
 - 3. Th/U ratio in broad agreement with chondritic expectation
Conclusions on SN neutrinos in BOREXINO

- Together with LVD and ICARUS offers a third possibility to detect SN neutrinos at the same underground site
- Due to the high radiopurity is the only detector at present which can probe the neutrino-proton ES and determine both T_x and L_x. Limited by statistics.