

You are here

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 32nd Course Particle and Nuclear Astrophysics Erice-Sicily: 16 - 24 September 2010

Underground and above ground nuclear astrophysics

Filippo Terrasi

Dept. Of Environmental Sciences 2nd University of Naples, Caserta

and

Istituto Nazionale di Fisica Nucleare Naples, Italy

FAR FROM BEING (WELL) KNOWN !!!

Element abundances in solar system

Hydrostatic equilibrium

dP/dr = - G M(r) $\rho(r)/r^2$ Equation of state P(r) = (k/M) $\rho(r)$ T(r) Virial theorem: 2 E_{int} = - U = -E_G

 $E_{irr} = E_G = G M^2/R = 3.5 \cdot 10^{41} J = \tau L (L=3.8 \cdot 10^{26} J/s) Sun: \tau = 5 10^7 y$

Gravitational energy cannot produce the radiated energy during the star lifetime Nuclear reactions supply the energy released by the star.

Stellar evolution during thermal equilibrium

Nuclear inputs to evolutionary models:

Energetics of reactions $Q = M_1 + M_2 - M_3 - M_4$

Reaction rates: $R_{ij}(T) = (n_{i} n_{j} / (1+\delta_{ij})) < \sigma_{ij} v_{rel} >$ Boltzmann distribution Exponential behaviour $<\sigma v > = (8/\pi\mu)^{1/2} (1/kT)^{3/2} \int_{0}^{\infty} \sigma(E) E \exp(-E/kT) dE$ $\tau_{ij}(T) = 1/(n_{i} < \sigma_{ij} v_{rel} >)$

Astrophysical S-factor: S(E) = σ (E) E exp($2\pi\eta$); η =Z₁Z₂ e^2 /hv

Charged particle reactions in stars

Astrophysical factor and Gamow peak

Do we know S(E) at the relevant energy?

Blind extrapolation may lead to ~ 3 orders of magnitude systematic errors!!

C.Barnes et al. Phys. Lett. 197(1987)315 Importance of **experimental reaction rates** for understanding of nucleosynthesis, energy production in stars, solar neutrino problem, theories of stellar evolution

- Quiescent burning (essentially p and α radiative capture): Eo << CB; σ < pb
- i) direct measurements at $E = E_0$
- ii) extrapolation from higher energy measurements
- iii) indirect methods (Coul. break-up, delayed activity transfer reactions, "trojan horses"). (see C. Rolfs talk)
- Explosive/hot burning: Eo \approx CB but $\tau_{react} \leq 1$ s; RIB (low intensity)
- Imply very low background (underground lab)
 - Imply use of efficient and selective detection apparatuses
 - Imply comparison with direct methods and model tuning

Problem of extrapolation

LUNA 1997-2010 - experimental set-up

LNGS Lab

LUNA I

LUNA

50

Voltage Range : 1 - 50 kV Output Current: 1 mA Beam energy spread: 20 eV

Voltage Range : 50 - 400 kV Output Current: 500 μA Beam energy spread: 70 eV

C. Broggini talk

For more details: H. Costantini, A. Formicola, G. Imbriani, M. Junker, C. Rolfs and F. Strieder, REPORTS ON PROGRESS IN PHYSICS 72 (2009) 086301 LUNA: a laboratory for underground nuclear astrophysics

Electron screening: the $d+^{3}He$ reaction:

Stopping powers

for $E_d < 18.2 \text{ keV} \implies$ "electronic stopping power" vanishes

threshold effect

²⁶Al – γ-astronomy and meteorites

Evidence that ²⁶Al nucleosynthesis is still active (SN and NOVAE) Signature of ²⁶Mg production during the Hydrogen burning (AGB)

LUNA Measurements

 γ -rlaig Specifictios cop(aboith 51P%) e-ANSignamentation and the analytic finite of the

No direct strength resonance data

(level structure derived from the single particle transfer reaction: ²⁵Mg(³He,d)²⁶Al)

²⁵Mg(p, γ)²⁶Al – HPGe spectra $E_R = 190 \text{ keV}$

Branchngs

Eγ	1791	3092	3951	4131	6079	6496
E _X	4705	3404	2545	2365	417	0
LUNA [%]	51	1.6	8	23	11	5.8
err	2	0.5	1	2	1	1.1
Endt [%]	50	4.5	5.8	19	21	0
		BR-	→0 = 74.6 %	6		

²⁵Mg(p, γ)²⁶Al – BGO spectra $E_R = 190 \text{ keV}$

²⁵Mg(p, γ)²⁶Al – BGO spectra $E_R = 93$ keV

The AMS measurement

Table 7: Comparison between AMS and BGO prompt- γ results

	AMS			prompt-γ				
Target	$\frac{N(^{26}Al)}{N_p}$	Stat.(%)	Syst.(%)	Err	Yield ^{max} \star f_0	Stat.(%)	Syst.(%)	Err
304keV-S	2 72E-11	1	3	7.69E-13	2 54E-11	0.2	67	1 70E-12
304keV-S	2.38E-11	6	3	6.74E-13	2.47E-11	0.2	6.7	1.66E-12

Normalization measurements

→ Natural target with known Oxygen content and stoichiometry measurement of ${}^{24,25,26}Mg(p,\gamma){}^{25,26,27}AI$ at $E_{cm} = 214$, 304, and 326 keV resonances with HPGe (@ 42 cm) and BGO setup, → normalization for low-energies

²⁴ Mg(p,γ) ²⁵ Al E _{cm} = 214 keV	ωγ [meV] LUNA HPGe	ωγ [meV] LUNA BGO	ωγ [meV] Powell et al. 1999	ωγ [meV] Trautvetter 1975			
UII	10.6 ± 0.4	10.9 ± 0.5	12.7 ± 0.9	10.2 ± 0.8			
²⁵ Mg(p,γ) ²⁶ Al E _{cm} = 304 keV	ωγ [meV] LUNA HPGe	ωγ [meV] LUNA BGO	ωγ [meV] Iliadis et al. 1990	ωγ [meV] NACRE			
	31.2 ± 0.9	30.6 ± 0.8	29 ± 2	31 ± 2			
BR→0 = 87.8 %							
²⁶ Mg(p,γ) ²⁷ Al E _{cm} = 326 keV	ωγ [meV] LUNA HPGe	ωγ [meV] LUNA BGO	ωγ [meV] Iliadis et al. 1990	ωγ [meV] NACRE			
	280 + 10	270 + 15	240 + 30	590 + 10			

An alternative approach: Recoil Mass Separator

Recoil collection and identification

Coincidence γ-spectrum

Recoil Separators

for Nuclear Astrophysics

European Recoil mass separator for Nuclear Astrophysics

Commissioning.

Rogalla et al. EPJ A 6 (1999)471; Rogalla et al NIM A 513(2003) 573; Gialanella et al NIM A 522(2004) 432; Schuermann et al. NIM A 531 (2004) 428; Di Leva at al. NIM A, 595, (2008)381

¹²C(α , γ)¹⁶O total cross section

Gamma-ray detection

Gamma-rays gated by recoils to suppress background

(in preparation)

ERNA Jet target

Helium-Gas

Argon-Gas

Neon-Gas

Optimization of nozzle-catcher design.

Collaboration with Notre Dame.

Collaboration with Plasmonx at LNF.

Recoils gated by gamma-rays to select a transition:

Beam

Effect of the gammaray angular distribution on the recoil energy spectrum. Interference study.

Jet-Target

4 Nal Det.

Production of ⁷Be in the Universe:³He(α , γ)⁷Be

- BBN and stellar nucleosynthesis Palmerini et al PASA, 26-3, (2009) - Measurement of the total cross section Di Leva et al. PRL102, 232502 (2009) and PRL 103, 159903 (2009)

³He(⁴He,γ)⁷Be S-factor

Cavado 45.

3.00

LOCAI

TECNI

1

- Improvements in ion optics -New detection setup

Κίρκη Island of Eea

Dosso Dossi (Giovanni di Niccolo Luteri) "Circe", c. 1522-1524, canvas, Galleria Borghese, Rome

Circe and Odysseus

s

e

r

Center for Isotopic Research on Cultural and Environmental heritage

DSA-SUN

28/02/2005: nice work!

Gamma-ray detection: angular distribution

1) Nucleosynthesis in AGB

2)Blocking of helium burning and carbon burning: ${}^{16}O(\alpha,\gamma){}^{20}Ne$.

 ${}^{16}O(\alpha,\gamma){}^{20}Ne$ is a perfect test of the microscopic cluster models used for alpha captures on light nuclei (e.g. PRC 38(1988)2463).

A lot of discussion about a non resonant term. (PRC36(1987)892, NPA A612(1997)149c)

Best case for E0 transitions in light nuclei

Satellite projects

1)¹²C+¹²C fusion reactions Proton channel completed Alpha channel planned in 2011, possibly in Bochum (Bragg Spectrometer+Si – Uni Connecticut)

