Indirect Dark Matter search in cosmic rays

F.S. Cafagna, INFN Bari

F.S. Cafagna, ERICE 32nd Course: Particle and Nuclear Astroph., Sep. 2010

- Charge identification
- Good (≥1TV) Maximum Detectable Rigidity (MDR) to defeat particle spillover (pbar)

- Charge identification
- Good (≥1TV) Maximum Detectable Rigidity (MDR) to defeat particle spillover (pbar)
- Good (*e/h* > 10⁻⁵) particle identification (positron)

Positron/Proton rejection factor > 10⁻⁵

- Charge identification
- Good (≥1TV) Maximum Detectable Rigidity (MDR) to defeat particle spillover (pbar)
- Good (*e/h* > 10⁻⁵) particle identification (positron)
- Redundancy to calculate efficiencies and systematic in flight (absolute fluxes)
- All other useful detectors ...
- Very low secondary background -> SPACE F.S. Cafagna, ERICE 32nd Course: Particle and Nuclear Astroph., Sep. 2010

Antimatter from DM calculation Indirect Detection \bar{p} and e^+ from DM annihilations in halo

Antimatter from DM calculation Indirect Detection \bar{p} and e^+ from DM annihilations in halo

Antimattor from DM calculation Indirect Detection p and e⁺ from DM annihilations in halo

Antimatter from DM calculation Indirect Detection p and e⁺from DM annihilations in halo

Antimattor from DM calculation Indirect Detection p and e⁺from DM annihilations in halo

Antimattor from DM calculation Indirect Detection p and from DM annihilations in halo

INFN Listituto Nazionale di Fisica Nucleare

M. Cirelis, No. 2010 http://www.ba.infn.it/~now/now2010/

PAMELA Collaboration

PAMELA detectors

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

Design Performance

14 A 1

•	Antiprotons	80 MeV - 150 GeV
•	Positrons	50 MeV – 270 GeV
•	Electrons	up to 400 GeV
•	Protons	up to 700 GeV
•	Electrons+positrons	up to 2 TeV
		(calorimeter alone)
•	Light Nuclei (He/Be/C	C) up to 200 GeV/n
•	AntiNuclei search	sensitivity of 3x10 ⁻⁸ in He/He
	 → Simultaneous measurer → New energy range → Unprecedented statistic 	ment of many cosmic-ray species

PAMELA: the integration

The Resurs DK-1 spacecraft

the satellite & launch

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006
 - ~1200 days of data taking (~73% livetime)
 - ~14 TByte of raw data downlinked
 - >1.4x10⁹ triggers recorded and under analysis

High-energy antiproton selection

Antiproton to Proton Ratio

Positron selection with calorimeter

The "pre-sampler" method

The electromagnetic calorimeter

Characteristics:

- 44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 I_o
- 4224 channels
- Dynamic range 1400 mip
- Self-trigger mode (> 300 GeV GF~600 cm² sr)

The "pre-sampler" method

The electromagnetic calorimeter

Characteristics:

- 44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 l_o
- 4224 channels
- Dynamic range 1400 mip
 - Self-trigger mode (> 300 GeV GF~600 cm² sr)

e⁺ background estimation from data

Rigidity: 20-28 GV

Positron to All Flectron Fraction

INFN Istituto Nazionale di Fisica Nucleare

1.0. Ouragna, ETTOE OZNA OOMOO. E ARADO ANA PRODUCT ADROPT., OOP. 2010

DM ?

 PAMELA ability of measuring both proton and electron charge ration, make it possible to put several constrains to the models

arXiv:0809.2409v3

INFN

Leptophilic DM

DM only annihilates into charged leptons. DM masses between 0.4 and 2 TeV, but boost factors on the order of 10².

D. Grasso et al. Astrop. Phys. 32 (2009), arXiv: 0905.0636v3

I. Cholis et al. arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

Example: Dark Matter

Hooper and Zurek arXiv:0902.0593v1

Kaluza-Klein dark matter

arXiv:0808.3725

Bergström, Bringmann & Edsjö (2008)

section to be 'boosted' by >1000.

0.2

0.1

-

HEAT

PAMELA

Gamma constrains

Decaying DM excluded, leptonic annihilation with "fine-tuned" parameter

Wino Dark Matter in a non-thermal Universe

G. Kane, R. Lu, and S. Watson arXiv:0906.4765v3 [astro-ph]

INFN

Astrophysical Explanation Pulsars

S. Profumo Astro-ph 0812-4457

- Mechanism: the spinning **B** of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at τ ~ 10⁵ years.
- Young (T ~10⁵ years) and nearby (< 1kpc) If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old
- Many others after Fermi/GLAST
- Diffuse mature pulsars

Positrons from Pulsar

Astrophysical Explanation: Pulsars

Astrophysical Explanation: Pulsars

 contribution of all nearby pulsars in the ATNF catalogue (~150 pulsars) with d < 3 kpc with age 5 × 104 < T < 107 yr

D. Grasso et al. Astrop. Phys. 32 (2009), arXiv: 0905.0636v3

F.S. Cafagna, ERICE Varanoworks Poptize 29 May 2010 ar Astroph., Sep. 2010

Antiprotons & positrons from old SNR's

- positrons created as secondary products of hadronic interactions inside the sources
- secondary production takes place in the same region where cosmic rays are being accelerated
- Antiproton/proton and B/C increase for E> 100GeV

Antiprotons & positrons from old SNR's

Positron Fraction Theoretical Uncertainties

T. Delahaye et al., arXiv: 0809.5268v3

Conclusions

- We are entered in the new era of precision measurements of (anti)particle fluxes in CR.
- This opens new scenarios in indirect detection of DM but force us to improve our knowledge of the background investigating "standard" astrophysics.
- PAMELA data show anomalies only in the positron sector favoring a "lepthophilic" DM but ...
- ... combined analysis of PAMELA, FERMI and HESS put strong constraints on that DM model.
- The knowledge of background and particle fluxes must be improved, stay tuned for new PAMELA data on e[±], p & He, B & C fluxes!

THANKS !!!!

