Supernovae la and Dark Energy tracking systematic uncertainties

Reynald Pain Laboratoire de Physique Nucléaire et des Hautes Energies UPMC, UPD, CNRS/IN2P3, Paris, France

SNe la and Dark Energy

- Measuring the Energy Content of the Universe
- Data reduction : tracking systematic uncertainties
- Latest SN cosmological constraints
- What's coming next?

I - SN Cosmology in a few slides

Experimental Principle

2 observables : flux: *f* Redshift: z

Use SN Ia as distance indicators to measure the Luminosity distance d_L

d_L is sensitive to the expansion rate and to the Energy content of the Universe

The Luminosity Distance

Assume the Universe is made of 2 « fluids » : Masse and X of density ρ_X

$$d_L(z) = (1+z)\frac{c}{H_0} \int dz' \left(\Omega_M (1+z')^{-3} + (1-\Omega_M)\frac{\rho_X(z')}{\rho_X(0)}\right)^{-1/2}$$

Favor a non zero Λ

Sep 18, 2010

What is X (dark energy)?

$$\rho(z) = \rho_0 \exp\left(\int 3\frac{w(z)+1}{1+z}dz\right)$$

Equ. of State $w = \frac{p}{\rho}$

Experiment ingredients:

Low-z and High-z SNe Ia

δw (w=-1) ~ 2.5 δm

• $\Omega_{\rm M}$ prior or constraint -> increase precision

SNe la are good cosmological tools

Very Luminous events⇒ visible at cosmological distances

Show little luminosity dispersion

But they are NOT standard candles

Calibrating Supernovae Ia

SNe Ia show Light Curve shape-luminosity relationships (similar to Cepheids P-L relation)

They also exhibit color luminosity relation (brighterbluer)

⇒Allows us to measure
after empirical corrections - distances to 5% precision

SNe la Modelisation

Using radiative transfer codes, this relationship is reproduced simply by increasing the abundance of ⁵⁶Ni in the explosion.

Here this is characterized by increasing the effective temperature of the atmosphere.

Cosmology with SNe la

An empirical approach

$$\mu_B = m_B - M_B + \alpha(s - 1) - \beta c$$

Absolute magnitude Light curve shape at maximum correction

Resframe apparent magnitude at maximum

Color correction. Accounts for

- extinction by dust
- intrinsic color variations

II – Data reduction : tracking systematic uncertainties

Why worrying about systematics?

SN cosmology is conceptually simple, and (mostly) a relative measurement (Ω_{i} , w)

But it is (mostly) empirical : no precise theoretical understanding of SN Ia explosion mechanism and therefore of their physical properties

And subject to z dependent (known) systematic uncertainties

- affecting measurements : e.g selection effects (malquist), PSF photometry on galaxy, ...
- of astrophysical nature : e.g dust, lensing along the ligne-ofsight

Can SN still be used to constrain cosmological parameters?

There is an indication that the constraints on dark energy parameters are different when different methods are used to fit the light curves of Type Ia supernovae (Hicken et al. 2009b; Kessler et al. 2009). We also found that the parameters of the minimal 6-parameter ΛCDM model derived from two compilations of Kessler et al. (2009) are different: one compilation uses the light curve fitter called SALT-II (Guy et al. 2007) while the other uses the light curve fitter called MLCS2K2 (Jha et al. 2007). For example, Ω_{Λ} derived from WMAP+BAO+SALT-II and WMAP + BAO + MLCS2K2 are different by nearly 2σ . despite being derived from the same data sets (but processed with two different light curve fitters). If we allow the dark energy equation of state parameter. However, given the scatter of results among different we find that w derived from WMAP+BAO+ compilations of the supernova data, we have decided to WMAP+BAO+MLCS2K2 are different by \sim

WMAP-7 (Komatsu et al, 2010)

choose the "WMAP+BAO+ H_0 " (see Section 3.2.2) as our best data combination to constrain the cosmological parameters, except for dark energy parameters. For dark energy parameters, we compare the results from $WMAP+BAO+H_0$ and WMAP+BAO+SN in Section 5. Note that we always marginalize over the absolute magnitudes of Type Ia supernovae with a uniform prior.

Systematic floor reached ?

Sep 18, 2010

Systematic floor reached ?

Extracting mb, s and c from observations

SN restframe fluxes at different redshifts

- → empirical model to interpolate between photometric measurements
- → Trained on sets of nearby & distant SNe

Several LC fitters : SALT2 (Guy et al, 2007), SIfTO (Conley et al, 2007), MLCS2k2 (Jha et al, 2007), CMAGIC (Wang et al, 2003), ...

SDSS-II First Year Results

(Kessler et al, 2009)

Large combined data sample → Measurement of w Analysis performed with two LC fitters: MLCS2k2 (Jha et al, 07) SALT2 (Guy et al, 07)

→ thorough comparison of two lightcurve fitters / distance estimators.

Discrepancies between methods ?

Sep 18, 2010

Differences in LC fitters is not a systematic uncertainty

Origins of the "discrepancy" now well identified

(1) Model rest-frame UV calibration
 → disappears with improved photometric calibration

(2) Treatment of the color variability of the SNe Ia.
 → disappears when assumptions (and priors) are dropped (empirical approach)

The SN Ia color "problem"

SN Color variability : dust + intrinsic variability ?

(4) Dust shell around the supernova

- At least 4 (possible) sources of dust
 - (1) MW dust (Cardelli et al, 1989; Schlegel et al, 1998)
 - (2) Intergalactic dust
 - (3) Host galaxy dust

$$A_{\lambda} = \mathbf{R}_{\lambda} \times E(B - V)$$

 $\dot{R}_{B} \sim 4.1$ for MW dust

 \rightarrow no a-priori knowledge of the properties of (2), (3) & (4) \rightarrow may be different, may evolve with the environment (and z)

 \rightarrow no a-priori knowledge of the SN intrinsic colors (variability)

SN la colors

- The "effective" reddening law for SNe does not follow the CCM law.
- For SNe Ia the total to selective extinction ratio

R_B ~ 2.5-3 < 4.1

Other possible systematic uncertainties

- Peculiar velocities for low-z SNe
- Contamination by Core collapse SNe for high-z SNe
- Evolution of color-luminosity relation with redshift
- Evolution of SNe with *z* : age of stellar population or metallicity
- Gravitational magnification

- about 200 different systematics (S_k) identified.

- Conversion of those systematics into a covariance matrix of SNe distance moduli (μ_i) $C_{sys,ij} = \sum_k \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} (\Delta S_k)^2$

SN la host galaxies

- No detailed understanding of SN Ia progenitors
- Are M_B , α and β "universal" parameters? Any age or metallicity (environmental) dependence?
- ugrizJHK host data allows estimations of:
 - Host star formation rate
 - Host stellar mass content

Sep 18, 2010

Hubble residuals versus host mass

SNe Ia are brighter (4σ) in massive galaxies after lightcurve shape and colour correction

Subtle effect – 0.08mag – smaller than stretch and colour corrections Independent of light curve shape

Sep 18, 2010

Improved Cosmological analysis

Two ways to proceed:

1) Add a further linear host term, H, to the analysis:

$$\mu_B = m_B - M_B + \alpha(s-1) - \beta c + \gamma H$$

- Requires very precise measure of H, and robust errors

2) Use two M_B – one for high-mass galaxies and one for low-mass

$$\mu_B = m_B - M_B^1 + \alpha(s-1) - \beta c \quad \text{when } H < H_{\text{split}}$$
$$\mu_B = m_B - M_B^2 + \alpha(s-1) - \beta c \quad \text{when } H \ge H_{\text{split}}$$

Sep 18, 2010

SNLS3 Cosmological Constraints

Sep 18, 2010

SNLS3 Cosmological Constraints

III - SNLS 3yr data and combined SN constraints

SNLS : a "Rolling Search" survey

Each lunation (~18 nights) : repeated observations (every 3-4 night) of 2 fields in four bands (griz)+u for as long as the fields stay visible (~6 months)

for 5 years: ~500 SN Ia identified

SNLS 3yr Analysis

- Statistics x 3.5 $71 \rightarrow \sim 280$
- Two independent analyses (control of systematics)
 - \rightarrow SN photometry
 - \rightarrow photometric calibration
 - \rightarrow light curve fitters SALT2 + SiFTO
- Improved photometric calibration
- Improved supernova modeling (models trained on the SNLS data → bluer part of the restframe spectrum constrained without using observer frame U)
- Detailed studies of the SN host properties
- Systematics included in the cosmology fit

LCDM SNLS only constraints [stat+syst]

Acceleration detected at >99.999% confidence – including systematic effects

Sep 18, 2010

Combined SN sample

Sample	Redshift range	N_{SNe}	Ref.
Low- <i>z</i>	0.01 - 0.10	123	Hamuy (1996), Riess (1999), Jha (2006), Hicken (2009)
SDSS	0.06 - 0.4	93	Holzman (2009)
SNLS3	0.08 - 1.05	242	
HST	0.7 - 1.4	14	Riess 2007

More systematic uncertainties for each survey:

- calibration
- survey incompleteness (Malmquist bias)

Combined Hubble diagram

Sep 18, 2010

SN only constraints on w

SN only constraints on w

w = $-0.91^{+0.15}_{-0.21}$ (stat) $^{+0.07}_{-0.14}$ (syst)

Sep 18, 2010

Erice School 36 (see SNLS-3 papers (Sullivan et al, in prep)

w = -1.0x + -0.07 (stat+syst) (in prep)

IV - What's coming next?

Currently active SN programs

Low-z :

SNF (200 0.03<z<0.08 SN with multi-epoch spectrophotometry PTF1a : similar z : rolling trigger search + extensive photometric follow-up CSP : NIR follow-up

higher-z :

SDSS : + 400 SN 0.1<z<0.4 to analyze SNLS : + 200 SN 0.3<z<0.9 to analyze Joint SDSS/SNLS analysis (calibration + LC analysis)

z>1 :

HST measurement of o(10) SN to study specific issues (cluster selected SN, ...)

Aim : robust combined statistic+systematic uncertainty on constant w of better than 0.07 and attempt at measuring wa

« STAGE III » SN programs

Pan-starrs PS1: 1.8m + 7 deg2 2010-2015? (primarily weak lensing) goal : o(1000) up to z=1

DES : CTIO+new 3deg2 mosaic camera 2012-2016 (primarily weak lensing) goal: 3000 SN up to z=1

Skymapper : 1.35m MSSO (Australia) Rolling nearby (z~0.1) - yield ~100 SN Ia /yr 2011-2014

Will address some of possible systematics. Very difficult to significantly improve on precision

Sep 18, 2010

Stage IV ground based SN projects

Pan Starrs 4 : Simultaneous observing with Four 1.8m telescopes of 3 deg2 fov (0.3" pixels)

LSST :
One 8m telescope with
9 deg2 fov

=> 250000 SN/yr !

by 2020?

- low AND high-z SNe from the same instrument ...
 - repeat imaging (calibration <1%) + « sky calib. »

Space based cosmology with SN Ia

Detect/follow distant SN Ia from Space

First proposed in 1999 (SNAP) φ~2m telescope 0.6 deg. carrés -Vis+NIR 0.4->1.7 μ 2000 SNe 0.2<z<1.7 in 3 yrs

+ Several incarnation : DESTINY, JEDI, JDEM, DUNE, EUCLID, ... now WFIRST,

New study (Astier et al. submitted) based on a modified EUCLID concept (+filter wheel) All space SNe, no onboard spectroscopy 13000 SN up to z~1.5 with rest-frame NIR for a subsample $\sigma(w_p) = 0.03$ incl. Systematics

Summary

SNe la are excellent distance indicators

Current projects are getting more and higher quality data toward building a systematic limited Hubble diagram with ~1000 SN Ia with an expected precision on w (flat Univ., constant) of +/- 0.04-5 (stat) +/-0.04-5 (syst)

To overcome the current (systematic) limitations:

- More and better quality nearby SN (badly) needed
- More and better quality distant (z>0.7) SN needed
- Improve theoretical understanding of SNIa physics and environment
- Percent precision on w and significant precision on w' (wa) with SN is achievable. It will require exquisite control of systematics

									No.						
	•	•													
2005hk	20051c	2005kb	20061e	2006eb	2006fo	aveni Alexandria	200516	200614	2009m	2006op	2006nz	2005ku	2006fg	2006hx	2005hc
		S. Part													
							Carlos and	Sec. 5		Sectores 1					
2005ни	200648	200591	200644	2006/1	200600	2006AV	500eH	2006qk	200699	200646	2006kh	200591	2005he	200668	2005A.C
							1000							1.00	
20051F	2006fq	2006hq	200693	2005FF	2006on	2005ir	20061×	2006.jo	20051.j	2006Fd	2006ng	2005.js	2006Fw	2006Fy	2006er
													-		
20051a	2005ed	2005gb	Billez	2005iu	2005ex	2005je	2005fn	2005ks	2006Fs	2006ps	2006gn 1	2006ck	20051k	2006fz	2006ho
						Sec. 1		C. C. C.	200			1	and the second		
	2015-0					CALL REF.		2.37				and the second second	1 States	-	
2000 ja	2000 P		2004	200604	and the	avalu	Sec.	- Avar	S SAVEN	Zwogr	20050	C C L			
			Sec.				12		•			1000			
20051m	200601	2005fh	2006km	20061z	2006kb	2006ns	20064h	2005FJ	2005Fz	2006nc	200513	2006Fb	2006Fm	20061a	2005e1
	1000							Sec. 1	State of			Ser Sta	10 4	Sec.	Electric C
Sec.								Sec. State			and the				
2005gp	2006nx	2006nd	2005ez	20/5ey	2005hy	2006jh	2006kd	2006pn	2005hz	2006Fv	2005fn	2005ke	20051n	200m	2006hw
	Constant of	12.40	•		and the	N. S. Cal			1	USE OF	100		a la constance		Part Parts
	week Table	200	200614		1.5	mou	avela	and the second	-		200661	200614	2000	1223	
	Contra La				10 - N.S.		38.70	Care S.	Real Street				- Ange		
					1.	1	100		-						
200598	20069d	2006of	2005gx	2006ah	2005.jk	20067	20060	200571	2006jp	2006kx	2006nu	2006pe	2006an	2005Fb	2005fa
							E. Cardo								
	1.000			0	See See					The seal	W. D. TSP	10-10-1			Star 24
20059d	2006Fk	2006qf	2006Fa	2006ey	2005gc	2005W	2006od	2006F1	200518	2006mV	2006р6	2005hp	200614	2006n1	2006k2
			See al										100 120		
2005.11	200660	200510 11	and the second	201600	2006-00	200615	200611	20061b	200610	2009.4	200540	200600	2006-01	2006/u	200500
	Q .			Market Street		Ref (Sec. 24			I HARRIS		6.3425
				2012				A Provide State		122		2200			
B. Dild	ay, U.Ch	hicago	200614	200601	2005eg	num 11	200544	mannes	200600	20061.0	2006nu	200601	2006Fu	2050	200612