Experimental study of the ${}^{14}N(p,\gamma){}^{15}O$ reaction

Michele Marta

FZ Dresden - Rossendorf

Institute for Radiation Physics

Nuclear Physics Division

International School of Nuclear Physics (32nd Course) Erice (Sicily), 16 – 24.09.2010

Institute for Radiation Physics • Michele Marta • www.fzd.de • Mitglied der Leibnitz-Gemeinschaft

Outline

- 1. Motivation
- 2. Recent LUNA data (2008), $E_p = 0.36 0.4 \text{ MeV}$
- 3. Experiment and results at Dresden Tandetron:
 - E_p = 1058 keV resonance
 - Off resonance $E_p = 0.6 2.0 \text{ MeV}$
- 4. Summary and outlook

Hydrogen burning: the Carbon-Nitrogen-Oxygen (CNO) cycle

Astrophysical sites:

- Massive Stars: CNO more efficient than pp cycle (A. Heger's talk)
- Stars at the turn-off from the main sequence in the Hertzsprung-Russell diagram (age of globular cluster)
- Sun: CNO contributes only 0.8% to energy, but produces detectable neutrino flux (A. Ianni's talk)

Bottleneck reaction, determining the rate of the cycle: ${}^{14}N(p,\gamma){}^{15}O$

Astrophysics: our Sun

Observables:

- Luminosity
- Chemical abundances in the photosphere (absorption lines)
- Neutrino fluxes
 - Corrected for oscillation and detection efficiency
- Helioseismology
 - Density and sound velocity profiles, depth of the convective zone...

STANDARD SOLAR MODEL (SSM)

- Known physics: gravity, thermo-fluidodynamics, opacity, reaction cross sections...
- Assumptions: homogenous metallicity at the early stage of formation

Our Sun: Solar abundance problem

- New results for chemical composition of the photosphere (M.Asplund et al.)
- Updated solar model predictions strongly disagree with measurements from helioseismology, whereas previous models agreed

STANDARD SOLAR MODEL A. M. Ser	elli et al., Astrophys.J.Lett. 705, L123-L127 (2009)
--------------------------------	--

	Model	$(Z/X)_{surf}$	Z _{surf}	Y _{surf} (He)	$R_{\rm CZ}/R_{\odot}$ (Convection Zone)
old	GS98	0.0229	0.0170	0.2423	0.713	
new	AGSS09	0.0178	0.0134	0.2314	0.724	
HELIOSEISMOLOG	άY			0.2485 ± 0.0035	0.713 ± 0.0	01

• What is wrong? Metallicity in the solar core?

C+N abundance in solar core can in principle be measured by: CNO neutrino flux (Borexino, SNO+), solar core temperature (from ⁸B neutrino flux), nuclear reaction rates

W. C. Haxton and A. M. Serenelli, Astrophys.J. 687, 678-691 (2008)

The reaction ${}^{14}N(p,\gamma){}^{15}O$

- Captures to different excited states in ¹⁵O contribute to cross section
- Systematic uncertainty: true coincidence summing-in

Capture to the state	LUNA 2005 (Imbriani et al.)	TUNL 2005 (Runkle et al.)	
0	0.25 ± 0.06	0.49 ± 0.08	
6172	0.08 ± 0.03	0.04 ± 0.01	
6792	1.20 ± 0.05	1.15 ± 0.05	
Other	0.08 ± 0.04		
total	1.61 ± 0.08	1.68 ± 0.09	

Proton beam

Collimator, d=5 mm

Clover experiment at LUNA (C. Broggini's talk)

- Underground facility: reduced cosmic background
- *E*_p = 360, 380, 400 keV, *I*_p = 300 μA
- Solid TiN targets (55 keV thick) on Ta backing
- Eurisys clover detector: 4 single HPGe crystals closely packed
 - Addback mode and 4 single spectra check summing effect
 - Surrounding BGO for anti-Compton shielding

Cold finger, -300V

Target

shield

Heavy met

BGO

Ge

aboratory

Inderground

Astrophysics

Nuclear

RECENT DATA at LUNA

S-factor capture to ground state ${}^{14}N(p,\gamma){}^{15}O^{GS}$

- At three energies, precise ratio of cross sections: ground state / 6.79MeV
- Updated R-matrix fit, new recommended S_{GS}(0)=0.20±0.05 keV barn

Experimental set up in Dresden ($E_p = 0.6 - 2 \text{ MeV}$)

- 3 MV Tandetron, Cs sputter ion source (10 40 μ A), 1 15 μ A on target
- 150µg/cm² TiN solid targets (reactive sputtering) on Ta backing, directly watercooled

- three 100% HPGe detectors (90°, +127°, -127°) BGO suppressed, at 30cm +
- one 60% HPGe detector at 55°, in close distance (4 cm)

Experimental set up in Dresden ($E_p = 0.6 - 2 \text{ MeV}$)

- 3 MV Tandetron, Cs sputter ion source (10 40 μ A), 1 15 μ A on target
- 150µg/cm² TiN solid targets (reactive sputtering) on Ta backing, directly watercooled

- three 100% HPGe detectors (90°, +127°, -127°) BGO suppressed, at 30cm +
- one 60% HPGe detector at 55°, in close distance (4 cm)

Target profile: ${}^{15}N(p,\alpha\gamma){}^{12}C$ resonance scan

- ¹⁵N isotope is present in the target with 0.37% natural abundance
- Daily scan on the E_p =897keV resonance, observing the yield of the 4.4MeV γ -ray (first excited state of ¹²C)

γ -spectra on the 278 and 1058 keV resonances

Michele Marta • Forschungszentrum Dresden - Rossendorf • Erice, 19-09-2010

γ -spectra on the 278 and 1058 keV resonances

1058keV resonance strength $\omega\gamma$, relative to 278keV strength

Reaction	Literature		Pres	Literature	
	$E_{\rm p} \; [\rm keV]$	$\Gamma_{\rm lab} \ [\rm keV]$	$\omega \gamma_n / \omega \gamma_{278}$	$\omega\gamma~[{ m eV}]$	$\omega\gamma~[{ m eV}]$
${}^{14}N(p,\gamma){}^{15}O$	278	1.12	$\stackrel{\rm Def}{=} 1$		$0.0131 {\pm} 0.0006$
$^{14}\mathrm{N}(\mathrm{p},\gamma)^{15}\mathrm{O}$	1058	3.8	$27.8 {\pm} 0.9$	$0.364{\pm}0.021$	$0.31 {\pm} 0.04$
$^{15}\mathrm{N}(\mathrm{p},\!\alpha\gamma)^{12}\mathrm{C}$	430	0.1	$(1.73 \pm 0.07) \cdot 10^3$	22.7 ± 1.4	21.1 ± 1.4
$^{15}\mathrm{N}(\mathrm{p},\!\alpha\gamma)^{12}\mathrm{C}$	897	1.57	$(2.77 \pm 0.09) \cdot 10^4$	362 ± 20	293 ± 38

Off resonance S-factors (preliminary): capture to 6792 keV and ground state (g.s)

Summary and Outlook

- Renewed interest in ${}^{14}N(p,\gamma){}^{15}O$ reaction rate due to Solar composition problem
- Recent data at LUNA: 8% precision on S_{tot}
- Experiment in FZ Dresden (at high energy):
 - More precise strength for the 1058 keV resonance
 - Off resonance data (preliminary)

Improvements?

- Off resonance data at high-energy to improve the fit constraints → work in progress
- Measure the Γγ of 6.79 MeV subthreshold state, which influences the S-factor at very low energy (INFN - Legnaro National Laboratories)

The LUNA collaboration

Bochum (Germany): Debrecen (Hungary): Dresden (Germany): Genoa (Italy): Gran Sasso (Italy): Milan (Italy): Naples (Italy): Padua (Italy):

Teramo (Italy): Turin (Italy): C.Rolfs, F.Strieder, H.-P.Trautvetter Z.Elekes, Zs.Fülöp, Gy.Gyürky, E.Somorjai M.Anders, D.Bemmerer, M.Marta P.Corvisiero, H.Costantini, A.Lemut, P.Prati A.Formicola, C.Gustavino, M.Junker A.Guglielmetti, C.Mazzocchi G.Imbriani, B.Limata, V.Roca, F.Terrasi C.Broggini, A.Caciolli, M.Erhard, R.Menegazzo, C.Rossi Alvarez **O.Straniero** G.Gervino

Collaborators for measurement in Dresden:

- Dresden FZD (Germany): D.Bemmerer, R.Beyer, E.Grosse, R.Hannaske, A.R.Junghans, M.Marta, C.Nair, R.Schwengner, E.Trompler, A.Wagner, D.Yakorev
- Debrecen (Hungary): Zs.Fülöp, Gy.Gyürky, T.Szücs
- Padua (Italy): C.Broggini, A.Caciolli, M.Erhard, R.Menegazzo

Thank you for your attention!