SEARCH FOR DARK MATTER GAUGE BOSONS WITH THE MAINZ MICROTRON (MAMI)

Harald Merkel

Johannes Gutenberg-Universität Mainz, Germany

International School of Nuclear Physics Erice 2010

- Motivation: the A'-Boson
 - ► The photon of dark matter
- How can we detect it?
 - Di-Lepton-Production
- Pilot experiment at MAMI
- Possible experimental program at MAMI
- Summary

Conventional strategies for dark matter search

Direct Production:

Tevatron, LHC

Direct Search:

CDMS, DAMA/LIBRA, XENON, CRESST, LUX, COUPP, KIMS, ...

Indirect Search:

PAMELA, Fermi, HESS, ATIC, WMAP, ...

Assumptions:

- There is dark matter (SUSY or something else)
- Dark matter interacts with Standard Model matter (besides gravity)
- Dark matter interacts via a "dark force"

Question:

- What is the character of this "dark force"?
- Scalar, pseudo-scalar, vector bosons?
- Massive or mass-less? Mass range?
- Size of the coupling constant?

The A' Boson

- Positron excess, but no antiproton excess (PAMELA, INTEGRAL 511 keV line, etc.)
- Large annihilation cross section
- Relic Abundance of DM in cosmology requires low cross section
- Direct Scattering
 DAMA/LIBRA modulation
- g-2 anomaly of the myon
- ⇒ Sommerfeld enhancement of cross section for low velocities
 - Large cross section in leptons
 - Small cross section in hadrons

 $\Rightarrow U(1)$ Vector Boson A' with Mass in GeV range

N. Arkani-Hamed, et al., Phys. Rev. D 79 (2009) 015014

Dark matter couples to U(1) bosons γ and A':

- Renormalization of charge:
 - \Rightarrow Mixing standard-model charge "dark" charge
- Coupling constant ϵ of electric charge to A'
- ϵ has to be small, if m_{χ} large
- Boson mass $m_{A'} > 0 \Rightarrow$ decay suppressed, macroscopic lifetime

 \Rightarrow Look for χ at high energies OR for A' at low energies!

B. Holdom, Phys. Lett. B 166 (1986) 196

~ few $ab^{-1}/100$ years

Parameter range for mass and coupling of A' boson

• Interesting range: $10^{-8} < \varepsilon < 10^{-2}$ $10 \,\mathrm{MeV} < m_{A'} < 1000 \,\mathrm{MeV}$

Energy range of MAMI!

J. D. Bjorken et al., Phys. Rev. D 80, 075018 (2009)

Weizsäcker-Williams approximation:

$$\frac{d\sigma}{dxd\cos\theta_{A'}} \approx \frac{8Z^2\alpha^3\varepsilon^2 E_0^2 x}{U^2} \tilde{\chi} \left[(1-x+\frac{x^2}{2}) - \frac{x(1-x)m_{A'}^2 (E_0^2 x \theta_{A'}^2)}{U^2} \right]$$

with $x = \frac{E_{A'}}{E_0}$
 $U(x,\theta_{A'}) = E_0^2 x \theta_{A'}^2 + m_{A'}^2 \frac{1-x}{x} + m_e^2 x$
 $\tilde{\chi} \approx 5 \sim 10$ (photon flux)

lifetime:

$$\gamma c \tau \sim 1 \, \mathrm{mm} \left(\frac{\gamma}{10}\right) \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_{A'}}\right)$$

J. D. Bjorken et al., Phys. Rev. D 80, 075018 (2009)

- Virtual photon instead of A'
- Computable in QED
- Same shape of cross section
- $\bullet \Rightarrow \mathsf{Not} \mathsf{separable}$

- Computable in QED
- Peak for l^* on mass shell
- ullet Energy transfer to l^- or l^+
- $\bullet \Rightarrow$ Kinematically separable

Other backgrounds: measurement!

Bethe-Heitler background

- Peak at $m_{e^+e^-} = 0$
- Peak for asymmetric production
- Minimum for symmetric production at x = 1

Harald Merkel, International School of Nuclear Physics, Erice, September 2010

A1: Spectrometer setup at MAMI

Spectrometer A:

$$\alpha > 20^{\circ}$$

 $p < 735 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 20\%$

Spectrometer B:

$$\alpha > 8^{\circ}$$

 $p < 870 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 5.6 \text{msr}$
 $\Delta p/p = 15\%$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 25\%$

- Target: 0.05 mm Tantalum (mono-isotopic ¹⁸¹Ta)
- Beam current: $100\mu A$
- Luminosity: $L = 1.7 \cdot 10^{35} \frac{1}{\text{s cm}^2}$ $(L \cdot Z^2 \approx 10^{39} \frac{1}{\text{s cm}^2})$
- Complete energy transfer to A' boson (x = 1)
- Minimal angles for spectrometers
- Spectrometer setup as symmetric as possible (background reduction)

Beam energy	$E_0 = 855.0 { m MeV}$
Spectrometer A	$p_{e^-} = 338.0 { m MeV}/c$
	$ heta_{e^-}=22.8^{\circ}$
Spectrometer B	$p_{e^+}=$ 470.0 MeV $/c$
	$\theta_{e^+} = 15.2^{\circ}$

• Particle identification e^+ , e^- by Cerenkov detectors

- Correction of path length in spectrometers $\approx 12 \text{ m}$ \Rightarrow Time-of-Flight reaction identification
- Coincidence time resolution $\approx 1 \, \mathrm{ns} \, \mathrm{FWHM}$
- Estimate of background: side band $5 \text{ ns} < T_{A \land B} < 25 \text{ ns}$
- Almost no accidental background $\approx 5\%$
- Above background: only coincident e^+e^- pairs!

- Mass of e^-e^+ pair $m_{A'}^2 = (e^- + e^+)^2$
- Decay outside of target ⇒ Spectrometer resolution defines mass resolution
- Measurement of spectrometer resolution via elastic scattering
- Simulation of mass resolution for this kinematics $\Rightarrow \delta m < 500 keV$

Exclusion limits

Confidence interval by Feldman-Cousins algorithm

- "Model" for Background-subtraction: average of 3 Bins left and right of central bin
- Resolution $\delta m < 500 \, \text{keV} = \text{bin width}$
- Averaging (mean of 10 bins) only for "subjective judgment"

Problem: model for cross section

Simulation:

Experiment:

• Fraction of transferred energy $x = E_{A'}/E_0$

- Weizsäcker-Williams approximation does not correspond to experiment
- Reason: neglected phase space of recoiling nucleus at x = 1
- $\bullet \Rightarrow$ Reaction identification!
- $\bullet \Rightarrow$ Kinematics of experiment was not (yet) optimal!

Exclusion limit for coupling ϵ

Problem: Weizsäcker-Williams approximation fails in peak region

- Subtraction of accidental background
- Model: continuum dominated by $\gamma^* \rightarrow e^+ + e^-$ (?)
- Conversion factor from ratio of cross sections:

$$\frac{d\sigma(X \to A'Y \to l^+ l^- Y)}{d\sigma(X \to \gamma^* Y \to l^+ l^- Y)} = \left(\frac{3\pi\varepsilon^2}{2N_f\alpha}\right) \left(\frac{m_{A'}}{\delta_m}\right)$$

\Rightarrow Preliminary exclusion limit from 6 days of beam time $\epsilon < 5 \cdot 10^{-4}$

Limitations of the experiment

 100μ A beam current for 20 min on 0.05 mm ¹⁸¹Ta target (melting point: 3017 °C):

- Air activation
- Optimization of kinematics
- Target cooling
- Shielding

 \Rightarrow 1 order of magnitude higher count rates possible

- Cross section of J. D. Bjorken et al.
- Improvement of theory desirable
- Marked regions: 2σ exclusion (preliminary)

- Sensitive to decay length 10 mm 130 mm
- $\Rightarrow \gamma c \tau = 4.35 \text{ mm} 1120 \text{ mm}$ (10%-limit)
- $\bullet \Rightarrow \varepsilon = 10^{-6} 10^{-5}$
- Target: 5 mm Ta \Rightarrow $L = 1.72 \cdot 10^{37} \frac{1}{\text{s cm}^2}$ at 100 μ A beam current
- Beam stabilization, shielding, target cooling

Step 2: Exclusion limits with shielded production vertex

- ${\ensuremath{ \bullet} }$ Macroscopic decay vertex distance $\qquad \epsilon < 10^{-4}$
- Luminosity
- Coupling vs lifetime
- Angular range

 $\epsilon > 10^{-6}$

 $m_{A'} < 500 \,\mathrm{MeV}/c^2$ $m_{A'} > 30 \,\mathrm{MeV}/c^2$

$$e + p \rightarrow e' + p + A'$$

 $\mapsto e^+ + e^-$

• A' detection via missing mass $m_{A'}^2 = (e + p - e' - p')^2$

- No restriction by decay
- Background: virtual Compton scattering: $e + p \rightarrow e' + p + \gamma + radiative tail$
- Vertex identification with high suppression factor $(10^8...10^{10})$ necessary
- Detector development

Other projects

• Experimental Program:

- Step 1: Pair production on heavy target
- Step 2: Shielded production vertex
- Step 3: Production on LH₂, Micro-vertex detector
- Pilot experiment
 - Experiment is feasible, background is under control
 - Some work on theory required
 - ▶ First exclusion limit $5 \cdot 10^{-4} \rightarrow 10^{-4}$ reachable

 \Rightarrow Determination of significant exclusion limits for the A' boson is possible at MAMI/A1

 $\epsilon > 10^{-4}$ $10^{-6} < \epsilon < 10^{-4}$ $m_{A'} < 40 \,\mathrm{MeV}/c^2$