## Dark Matter, Particle Physics and the LHC

## Frank Daniel Steffen





Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

### International School of Nuclear Physics Erice, September 19th, 2010



# What is the (particle ?) identity of dark matter???

# **Properties of Dark Matter**

• stable or lifetime well above

the age of our Universe

- electrically neutral
- clusters —
- "cold"
- dissipationless
- color neutral





#### The Standard Model

| GAUGE    | Gauge bosons                   | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}} ight)_{Y}$ |
|----------|--------------------------------|---------------------------------------------------------------------------|
| B-boson  | $A^{(1)}_{\mu} = B_{\mu}$      | $( {f 1}, {f 1})_0$                                                       |
| W-bosons | $A^{(2)a}_{\mu} = W^a_{\mu}$   | $({f 1},{f 3})_0$                                                         |
| gluon    | $A_{\mu}^{(3)a} = G_{\mu}^{a}$ | $({f 8},{f 1})_0$                                                         |

| MATTER                      | Fermions                                                                                    | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-----------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| leptons $I = 1, 2, 3$       | $L^{I} = \begin{pmatrix} \boldsymbol{\nu}_{L}^{I} \\ \boldsymbol{e}_{L}^{-I} \end{pmatrix}$ | $( {f 1}, {f 2})_{-1}$                                                     |
|                             | $E^{cI} = e_R^{-cI}$                                                                        | $({f 1},{f 1})_{+2}$                                                       |
| quarks $I = 1, 2, 3$        | $Q^I = egin{pmatrix} u^I_L \ d^I_L \end{pmatrix}$                                           | $({f 3},{f 2})_{+{1\over 3}}$                                              |
| $(\times 3 \text{ colors})$ | $U^{cI} = u_R^{cI}$                                                                         | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                                     |
|                             | $D^{c I} = d_R^{c I}$                                                                       | $(\overline{f 3},{f 1})_{+rac{2}{3}}$                                     |

| HIGGS | Higgs Boson                                             | $\left(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-------|---------------------------------------------------------|----------------------------------------------------------------------------|
| Higgs | $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                                       |

## Properties of Neutrino Dark Matter

- stable  $\rightarrow \tau_{\rm DM} \gtrsim$  age of our Universe
- clusters  $\leftarrow$  gravitation
- fast "hot"
- electrically neutral
- color neutral



# Neutrino Dark Matter = Hot Dark Matter in conflict with Large Scale Structure

#### The Standard Model

| GAUGE    | Gauge bosons                   | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}} ight)_{Y}$ |
|----------|--------------------------------|---------------------------------------------------------------------------|
| B-boson  | $A^{(1)}_{\mu} = B_{\mu}$      | $( {f 1}, {f 1})_0$                                                       |
| W-bosons | $A_{\mu}^{(2)a} = W_{\mu}^{a}$ | $({f 1},{f 3})_0$                                                         |
| gluon    | $A^{(3)a}_{\mu} = G^a_{\mu}$   | $({f 8},{f 1})_0$                                                         |

| MATTER                      | Fermions                                                          | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| leptons $I = 1, 2, 3$       | $L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$ | $({f 1},{f 2})_{-1}$                                                       |
|                             | $E^{cI} = e_R^{-cI}$                                              | $({f 1},{f 1})_{+2}$                                                       |
| quarks $I = 1, 2, 3$        | $Q^{I} = egin{pmatrix} u^{I}_{L} \ d^{I}_{L} \end{pmatrix}$       | $({f 3},{f 2})_{+{1\over 3}}$                                              |
| $(\times 3 \text{ colors})$ | $U^{cI} = u_R^{cI}$                                               | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                                     |
|                             | $D^{c I} = d_R^{c I}$                                             | $\left( \overline{f 3}, {f 1} ight)_{+ rac{2}{3}}$                        |

| HIGGS | Higgs Boson                                             | $\left(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-------|---------------------------------------------------------|----------------------------------------------------------------------------|
| Higgs | $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                                       |

# **Dark Matter**

# Physics beyond the Standard Model

# Supersymmetry

| GAUGE                           | Gauge bosons                                                                                          | Gauginos                                                                                           | $(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}})_{Y}$           |                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| B-boson, bino                   | $A^{(1)}_{\mu} = B_{\mu}$                                                                             | $\lambda^{(1)} = \widetilde{B}$                                                                    | $({f 1},{f 1})_0$                                                         | Minimal                  |
| W-bosons, winos                 | $A^{(2)a}_{\mu} = W^{a}_{\mu}$                                                                        | $\lambda^{(2)a} = \widetilde{W}^a$                                                                 | $({f 1},{f 3})_0$                                                         | Supersymmetric           |
| gluon, gluino                   | $A^{(3)a}_{\mu} = G^{a}_{\mu}$                                                                        | $\lambda^{(3)a} = \widetilde{g}^a$                                                                 | $({f 8},{f 1})_0$                                                         | Extension                |
| MATTER                          | Sfermions                                                                                             | Fermions                                                                                           | $\left(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}} ight)_{Y}$ | of the<br>Standard Model |
| sleptons, leptons $I = 1, 2, 3$ | $\widetilde{L}^{I} = \begin{pmatrix} \widetilde{\nu}_{L}^{I} \\ \widetilde{e}_{L}^{-I} \end{pmatrix}$ | $L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$                                  | $({f 1},{f 2})_{-1}$                                                      |                          |
|                                 | $\widetilde{E}^{*I} = \widetilde{e}_R^{-*I}$                                                          | $E^{cI} = e_R^{-cI}$                                                                               | $({f 1},{f 1})_{+2}$                                                      |                          |
| squarks, quarks $I = 1, 2, 3$   | $\widetilde{Q}^{I} = \begin{pmatrix} \widetilde{u}_{L}^{I} \\ \widetilde{d}_{L}^{I} \end{pmatrix}$    | $Q^{I} = egin{pmatrix} u^{I}_{L} \ d^{I}_{L} \end{pmatrix}$                                        | $({f 3},{f 2})_{+{1\over 3}}$                                             | •                        |
| $(\times 3 \text{ colors})$     | $\widetilde{U}^{*I} = \widetilde{u}_R^{*I}$                                                           | $U^{cI} = u_R^{cI}$                                                                                | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                                    | <b>Every Particle</b>    |
|                                 | $\widetilde{D}^{*I} = \widetilde{d}_R^{*I}$                                                           | $D^{cI} = d_R^{cI}$                                                                                | $(\overline{f 3},{f 1})_{+rac{2}{3}}$                                    | of the                   |
| Higgs, higgsinos                | $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$                                                  | $\widetilde{H}_d = \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$           | $({f 1},{f 2})_{-1}$                                                      | Standard Model           |
|                                 | $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$                                                  | $\widetilde{H}_{u} = \begin{pmatrix} \widetilde{H}_{u}^{+} \\ \widetilde{H}_{u}^{0} \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                                      | nas a<br>Superpartner    |

# Why Supersymmetry?



# Supersymmetry

| GAUGE                           | Gauge bosons                                                                                          | Gauginos                                                                                           | $(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}})_{Y}$ |                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|
| B-boson, bino                   | $A^{(1)}_{\mu} = B_{\mu}$                                                                             | $\lambda^{(1)} = \widetilde{B}$                                                                    | $({f 1},{f 1})_0$                                               | Minimal                  |
| W-bosons, winos                 | $A^{(2)a}_{\mu} = W^{a}_{\mu}$                                                                        | $\lambda^{(2)a} = \widetilde{W}^a$                                                                 | $({f 1},{f 3})_0$                                               | Supersymmetric           |
| gluon, gluino                   | $A^{(3)a}_{\mu} = G^{a}_{\mu}$                                                                        | $\lambda^{(3)a} = \widetilde{g}^a$                                                                 | $({f 8},{f 1})_0$                                               | Extension                |
| MATTER                          | Sfermions                                                                                             | Fermions                                                                                           | $\left(\mathrm{SU(3)_c},\mathrm{SU(2)_L} ight)_Y$               | of the<br>Standard Model |
| sleptons, leptons $I = 1, 2, 3$ | $\widetilde{L}^{I} = \begin{pmatrix} \widetilde{\nu}_{L}^{I} \\ \widetilde{e}_{L}^{-I} \end{pmatrix}$ | $L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$                                  | $({f 1},{f 2})_{-1}$                                            |                          |
|                                 | $\widetilde{E}^{*I} = \widetilde{e}_R^{-*I}$                                                          | $E^{cI} = e_R^{-cI}$                                                                               | $({f 1},{f 1})_{+2}$                                            |                          |
| squarks, quarks $I = 1, 2, 3$   | $\widetilde{Q}^{I} = \begin{pmatrix} \widetilde{u}_{L}^{I} \\ \widetilde{d}_{L}^{I} \end{pmatrix}$    | $Q^{I} = egin{pmatrix} u^{I}_{L} \ d^{I}_{L} \end{pmatrix}$                                        | $({f 3},{f 2})_{+{1\over 3}}$                                   | •                        |
| $(\times 3 \text{ colors})$     | $\widetilde{U}^{*I} = \widetilde{u}_R^{*I}$                                                           | $U^{cI} = u_R^{cI}$                                                                                | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                          | <b>Every Particle</b>    |
|                                 | $\widetilde{D}^{*I} = \widetilde{d}_R^{*I}$                                                           | $D^{cI} = d_R^{cI}$                                                                                | $(\overline{f 3},{f 1})_{+rac{2}{3}}$                          | of the                   |
| Higgs, higgsinos                | $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$                                                  | $\widetilde{H}_d = \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$           | $({f 1},{f 2})_{-1}$                                            | Standard Model           |
|                                 | $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$                                                  | $\widetilde{H}_{u} = \begin{pmatrix} \widetilde{H}_{u}^{+} \\ \widetilde{H}_{u}^{0} \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                            | nas a<br>Superpartner    |

#### Conservation of R-Parity

- superpotential:  $W_{\text{MSSM}} \leftarrow W_{\Delta L} + W_{\Delta B}$
- non-observation of L & B violating processes (proton stability, ...)
- postulate conservation of R-Parity  $\leftarrow$  multiplicative quantum number



The lightest supersymmetric particle (LSP) is stable!!!

#### Supersymmetric Dark Matter Candiates



#### **Standard Thermal History of the Universe**



#### **Standard Thermal History of the Universe**



14













#### **Neutralino DM Production at the LHC**



## **Collider Searches**



pp @ 14 Te

### Early SUSY Searches @ ATLAS



#### Controlling Energy Scale and Resolution of ET<sup>miss</sup> ...



... is very difficult !!!







# Things might turn out to be very different ...

# Other well-motivated candidates

#### **Extremely Weakly Interacting Particles (EWIPs)**



# Other well-motivated candidates

#### **Extremely Weakly Interacting Particles (EWIPs)**









#### **Axion Dark Matter**



#### Axion Condensate: CDM

 $\Omega_a^{\rm MIS} h^2 \sim 0.15 \, \theta_i^2 (f_{\rm PQ}/10^{12}\,{
m GeV})^{7/6}$ [..., Sikivie, '08; Kim, Carosi, '08, ...]

#### **Axion Dark Matter**



#### **Axion Dark Matter**




Bounds from Axion Searches Cosmological Axion Bounds Astrophysical Axion Bounds







#### **Extremely Weakly Interacting Particles (EWIPs)**



#### **Extremely Weakly Interacting Particles (EWIPs)**





## **Axino LSP Case**



Frank D. Steffen (Max Planck Institute for Physics, Munich)





## **Axino LSP Case**



Frank D. Steffen (Max Planck Institute for Physics, Munich)

# Probing axinos experimentally ???

# If we are lucky ...

[Freitas, Tajuddin, FDS, Wyler, '09]

#### **Stau Decays into Axinos**

BBN





### "Stable" Charged Massive Particle @ LHC





#### **Big-Bang Nucleosynthesis**





#### Catalyzed BBN [Pospelov, '06]



[Cyburt et al., '06; FDS, '06; Pradler, FDS, '07; Hamaguchi et al., '07; Kawasaki, Kohri, Moroi, '07; Takayama, '07; Jedamzik, '07; Pradler, FDS, '08]

CBBN of <sup>9</sup>Be: [Pospelov, '07; Pospelov, Pradler, FDS, '08]

#### [Freitas, FDS, Tajuddin, Wyler, '09]

#### **Axino LSP Case with a Charged Slepton NLSP**







Probing fa @ Colliders

[Brandenburg et al., '05]



Is the value of the Peccei-Quinn scale inferred from axino searches consistent with astrophysical axion bounds and results from axion searches?





#### **Extremely Weakly Interacting Particles (EWIPs)**



#### **Extremely Weakly Interacting Particles (EWIPs)**





## **Gravitino LSP Case**



Frank D. Steffen (Max Planck Institute for Physics, Munich)

# Probing gravitinos experimentally ???

# If we are lucky ...



#### Signatures of Gravitinos in Experiments

- Direct Detection of  $\widetilde{G}$
- Direct Production of  $\widetilde{G}$



[...; Buchmüller et al., '04; Hamaguchi et al., '04; Feng, Smith, '05; Martyn, '06; ...]

#### **Gravitino LSP Case with a Charged Slepton NLSP**



# Summary - Well-motivated DM Candidates

| candidate              | identity                                                                                                                | mass                        | interactions                                                            | production                            | constraints                                                                                            | experiments                                                                                                                                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a                      | axion<br>(spin 0)<br>NGoldst. boson<br>PQ symm. break.                                                                  | < 0.01  eV                  | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | misalign. mech.                       | $\leftarrow$ cold<br>CMB                                                                               | direct searches with<br>microwave cavities<br>$\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$                                                                                                                                       |
| ${	ilde \chi}_1^0$ LSP | lightest neutralino<br>(spin 1/2)<br>mixture of<br>$\widetilde{B}, \widetilde{W}, \widetilde{H}^0_u, \widetilde{H}^0_d$ | <b>)</b> <i>O</i> (100 GeV) | g, g', $y_i$<br>weak<br>$M_{ m W} \sim 100~{ m GeV}$                    | therm. relic<br>$\widetilde{G}$ decay | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm/hot} \\ \\ \text{BBN} \end{array}$ | indirect searches<br>direct searches<br>collider searches<br>$\hookrightarrow m_{\tilde{\chi}_1^0},  \tilde{\chi}_1^0$ coupl.                                                                                                     |
| $\widetilde{G}$ LSP    | gravitino<br>(spin 3/2)<br>superpartner<br>of the graviton                                                              | eV-TeV                      | $(p/M_P)^n$<br>extremely weak<br>$M_P = 2.4 \times 10^{18} \text{ GeV}$ | therm. prod.<br>NLSP decay            | ← cold<br>← warm<br>BBN                                                                                | $\widetilde{\tau}_1$ prod. at colliders<br>+ $\widetilde{\tau}_1$ collection<br>+ $\widetilde{\tau}_1$ decay analysis<br>$\hookrightarrow m_{\widetilde{G}}, M_P$ (?), $T_R$                                                      |
| $\widetilde{a}$ LSP    | axino<br>(spin 1/2)<br>superpartner<br>of the axion                                                                     | eV–GeV                      | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | therm. prod.<br>NLSP decay            | $\leftarrow \text{ cold/warm}$ $\leftarrow \text{ warm/hot}$ BBN                                       | $ \widetilde{\tau}_{1} \text{ prod. at colliders} $<br>$ + \widetilde{\tau}_{1} \text{ collection} $<br>$ + \widetilde{\tau}_{1} \text{ decay analysis} $<br>$ \hookrightarrow m_{\widetilde{a}} (?), f_{a}, T_{\mathrm{R}} (?) $ |

# Summary - Well-motivated DM Candidates



# Summary - Well-motivated DM Candidates

| candidate              | identity                                                                                                                | mass                        | interactions                                                            | production                            | constraints                                                                                            | experiments                                                                                                                                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a                      | axion<br>(spin 0)<br>NGoldst. boson<br>PQ symm. break.                                                                  | < 0.01  eV                  | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | misalign. mech.                       | $\leftarrow$ cold<br>CMB                                                                               | direct searches with<br>microwave cavities<br>$\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$                                                                                                                                       |
| ${	ilde \chi}_1^0$ LSP | lightest neutralino<br>(spin 1/2)<br>mixture of<br>$\widetilde{B}, \widetilde{W}, \widetilde{H}^0_u, \widetilde{H}^0_d$ | <b>)</b> <i>O</i> (100 GeV) | g, g', $y_i$<br>weak<br>$M_{ m W} \sim 100~{ m GeV}$                    | therm. relic<br>$\widetilde{G}$ decay | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm/hot} \\ \\ \text{BBN} \end{array}$ | indirect searches<br>direct searches<br>collider searches<br>$\hookrightarrow m_{\tilde{\chi}_1^0},  \tilde{\chi}_1^0$ coupl.                                                                                                     |
| $\widetilde{G}$ LSP    | gravitino<br>(spin 3/2)<br>superpartner<br>of the graviton                                                              | eV-TeV                      | $(p/M_P)^n$<br>extremely weak<br>$M_P = 2.4 \times 10^{18} \text{ GeV}$ | therm. prod.<br>NLSP decay            | ← cold<br>← warm<br>BBN                                                                                | $\widetilde{\tau}_1$ prod. at colliders<br>+ $\widetilde{\tau}_1$ collection<br>+ $\widetilde{\tau}_1$ decay analysis<br>$\hookrightarrow m_{\widetilde{G}}, M_P$ (?), $T_R$                                                      |
| $\widetilde{a}$ LSP    | axino<br>(spin 1/2)<br>superpartner<br>of the axion                                                                     | eV–GeV                      | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | therm. prod.<br>NLSP decay            | $\leftarrow \text{ cold/warm}$ $\leftarrow \text{ warm/hot}$ BBN                                       | $ \widetilde{\tau}_{1} \text{ prod. at colliders} $<br>$ + \widetilde{\tau}_{1} \text{ collection} $<br>$ + \widetilde{\tau}_{1} \text{ decay analysis} $<br>$ \hookrightarrow m_{\widetilde{a}} (?), f_{a}, T_{\mathrm{R}} (?) $ |

# Scenario I - Axion CDM (+ SUSY DM)

| candidate                  | identity                                                          | mass                       | interactions                               | production            | constraints                   | experiments events                                                                 |
|----------------------------|-------------------------------------------------------------------|----------------------------|--------------------------------------------|-----------------------|-------------------------------|------------------------------------------------------------------------------------|
| a                          | axion                                                             | $< 0.01~{\rm eV}$          | $(p/f_a)^n$                                | misalign. mech.       | $\leftarrow \text{cold}$      | direct searches with                                                               |
|                            | (spin 0)                                                          |                            | extremely weak                             |                       |                               | microwave cavities                                                                 |
|                            | NGoldst. boson                                                    |                            | $f_a \gtrsim 6 	imes 10^8  { m GeV}$       |                       |                               | $\hookrightarrow m_a,f_a,g_{a\gamma\gamma}$                                        |
|                            | PQ symm. break.                                                   |                            |                                            |                       | CMB                           |                                                                                    |
| $\widetilde{\chi}_1^0$ LSP | lightest neutralino                                               | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$                               | therm. relic          | $\leftarrow \text{cold}$      | indirect searches                                                                  |
|                            | (spin 1/2)                                                        |                            | weak                                       | $\widetilde{G}$ decay | $\leftarrow \text{warm/hot}$  | direct searches                                                                    |
|                            | mixture of                                                        |                            | $M_{\rm W} \sim 100~{\rm GeV}$             |                       |                               | collider searches                                                                  |
|                            | $\widetilde{B},\widetilde{W},\widetilde{H}^0_u,\widetilde{H}^0_d$ |                            |                                            |                       | BBN                           | $\hookrightarrow m_{\widetilde{\chi}^0_1},  \widetilde{\chi}^0_1 \text{ coupl.}$   |
| $\widetilde{G}$ LSP        | gravitino                                                         | eV-TeV                     | $(p/M_{\rm P})^n$                          | therm. prod.          | $\leftarrow \text{cold}$      | $\widetilde{\tau}_1$ prod. at colliders                                            |
|                            | (spin 3/2)                                                        |                            | extremely weak                             | NLSP decay            | $\leftarrow$ warm             | $+ \tilde{\tau}_1$ collection                                                      |
|                            | superpartner                                                      |                            | ${\rm M_P}=2.4\!\times\!10^{18}~{\rm GeV}$ |                       |                               | + $\tilde{\tau}_1$ decay analysis                                                  |
|                            | of the graviton                                                   |                            |                                            |                       | BBN                           | $\hookrightarrow m_{\widetilde{G}}, \mathrm{M}_{\mathrm{P}}$ (?), $T_{\mathrm{R}}$ |
| $\widetilde{a}$ LSP        | axino                                                             | eV-GeV                     | $(p/f_a)^n$                                | therm. prod.          | $\leftarrow \text{cold/warm}$ | $\widetilde{\tau}_1$ prod. at colliders                                            |
|                            | (spin 1/2)                                                        |                            | extremely weak                             | NLSP decay            | $\leftarrow \text{warm/hot}$  | $+ \tilde{\tau}_1$ collection                                                      |
|                            | superpartner                                                      |                            | $f_a \gtrsim 6 \times 10^8  { m GeV}$      |                       |                               | + $\tilde{\tau}_1$ decay analysis                                                  |
|                            | of the axion                                                      |                            |                                            |                       | BBN                           | $\hookrightarrow m_{\widetilde{a}} \ (?), f_a, T_{\mathrm{R}} \ (?)$               |

# Scenario I - Axion CDM (+ SUSY DM)

| candidate                  | identity                                                                                                                | mass                       | interactions                                                            | production                            | constraints                                                 | experiments events                                                                                                                                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a                          | axion<br>(spin 0)<br>NGoldst. boson<br>PQ symm. break.                                                                  | $< 0.01 \ {\rm eV}$        | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | misalign. mech.                       | ← cold<br>CMB                                               | direct searches with<br>microwave cavities<br>$\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$                                                                                                                                       |
| $\widetilde{\chi}_1^0$ LSP | lightest neutralino<br>(spin 1/2)<br>mixture of<br>$\widetilde{B}, \widetilde{W}, \widetilde{H}_u^0, \widetilde{H}_d^0$ | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$<br>weak<br>$M_{ m W}$ ~ 100 GeV                            | therm. relic<br>$\widetilde{G}$ decay | $\leftarrow \text{ cold}$ $\leftarrow \text{ warm/hot}$ BBN | indirect searches<br>direct searches<br>collider searches<br>$\hookrightarrow m_{\tilde{\chi}_1^0},  \tilde{\chi}_1^0$ coupl.                                                                                                     |
| $\widetilde{G}$ LSP        | gravitino<br>(spin 3/2)<br>superpartner<br>of the graviton                                                              | eV-TeV                     | $(p/M_P)^n$<br>extremely weak<br>$M_P = 2.4 \times 10^{18} \text{ GeV}$ | therm. prod.<br>NLSP decay            | ← cold<br>← warm<br>BBN                                     | $\widetilde{\tau}_1$ prod. at colliders<br>+ $\widetilde{\tau}_1$ collection<br>+ $\widetilde{\tau}_1$ decay analysis<br>$\hookrightarrow m_{\widetilde{G}}, M_P$ (?), $T_R$                                                      |
| $\widetilde{a}$ LSP        | axino<br>(spin 1/2)<br>superpartner<br>of the axion                                                                     | eV–GeV                     | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | therm. prod.<br>NLSP decay            | ← cold/warm<br>← warm/hot<br>BBN                            | $ \widetilde{\tau}_{1} \text{ prod. at colliders} $<br>$ + \widetilde{\tau}_{1} \text{ collection} $<br>$ + \widetilde{\tau}_{1} \text{ decay analysis} $<br>$ \hookrightarrow m_{\widetilde{a}} (?), f_{a}, T_{\mathrm{R}} (?) $ |
|                            |                                                                                                                         |                            |                                                                         |                                       |                                                             | still viable                                                                                                                                                                                                                      |
## Scenario 2 - WIMP DM (+ Axion DM)

| candidate                  | identity                                                                                                                | mass                       | interactions                                                            | production                         | constraints                                                                                        | experiments                                                                                                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a                          | axion<br>(spin 0)<br>NGoldst. boson<br>PQ symm. break.                                                                  | < 0.01  eV                 | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | misalign. mech.                    | $\leftarrow$ cold<br>CMB                                                                           | direct searches with<br>microwave cavities<br>$\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$                                                                                                                   |
| $\widetilde{\chi}^0_1$ LSP | lightest neutralino<br>(spin 1/2)<br>mixture of<br>$\widetilde{B}, \widetilde{W}, \widetilde{H}_u^0, \widetilde{H}_d^0$ | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$<br>weak<br>$_{M_{ m W}} \sim 100~{ m GeV}$                 | therm. relic $\widetilde{G}$ decay | ← cold<br>← warm/hot<br>BBN                                                                        | indirect searches<br>direct searches<br>collider searches<br>$\hookrightarrow m_{\tilde{\chi}_1^0},  \tilde{\chi}_1^0$ coupl.                                                                                 |
| $\widetilde{G}$ LSP        | gravitino<br>(spin 3/2)<br>superpartner<br>of the graviton                                                              | eV-TeV                     | $(p/M_P)^n$<br>extremely weak<br>$M_P = 2.4 \times 10^{18} \text{ GeV}$ | therm. prod.<br>NLSP decay         | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm} \\ \\ \text{BBN} \end{array}$ | $\widetilde{\tau}_1$ prod. at colliders<br>+ $\widetilde{\tau}_1$ collection<br>+ $\widetilde{\tau}_1$ decay analysis<br>$\hookrightarrow m_{\widetilde{G}}, M_P$ (?), $T_R$                                  |
| $\widetilde{a}$ LSP        | axino<br>(spin 1/2)<br>superpartner<br>of the axion                                                                     | eV–GeV                     | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | therm. prod.<br>NLSP decay         | $\leftarrow \text{ cold/warm} \\ \leftarrow \text{ warm/hot} \\ \text{BBN}$                        | $ \widetilde{\tau}_{1} \text{ prod. at colliders} $<br>+ $\widetilde{\tau}_{1}$ collection<br>+ $\widetilde{\tau}_{1}$ decay analysis<br>$\hookrightarrow m_{\widetilde{a}}$ (?), $f_{a}, T_{\mathrm{R}}$ (?) |

# Scenario 2 - WIMP DM (+ Axion DM)

| candidate                          | identity                                                          | mass                       | interactions                                   | production            | constraints                      | experiments                                                                        |
|------------------------------------|-------------------------------------------------------------------|----------------------------|------------------------------------------------|-----------------------|----------------------------------|------------------------------------------------------------------------------------|
| a                                  | axion                                                             | < 0.01  eV                 | $(p/f_a)^n$                                    | misalign. mech.       | $\leftarrow \operatorname{cold}$ | direct searches with                                                               |
|                                    | (spin 0)                                                          |                            | extremely weak                                 |                       |                                  | microwave cavities                                                                 |
|                                    | NGoldst. boson<br>PQ symm. break.                                 |                            | $f_a \gtrsim 6 \times 10^8  { m GeV}$          |                       | CMB                              | $\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$ still viable                         |
| ${\widetilde \chi}_1^0 \ { m LSP}$ | lightest neutralino                                               | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$                                   | therm. relic          | $\leftarrow \operatorname{cold}$ | indirect searches                                                                  |
|                                    | (spin 1/2)                                                        |                            | weak                                           | $\widetilde{G}$ decay | $\leftarrow \text{warm/hot}$     | direct searches                                                                    |
|                                    | mixture of                                                        |                            | $M_{\rm W} \sim 100~{\rm GeV}$                 |                       |                                  | collider searches                                                                  |
|                                    | $\widetilde{B},\widetilde{W},\widetilde{H}^0_u,\widetilde{H}^0_d$ |                            |                                                |                       | BBN                              | $\hookrightarrow m_{\widetilde{\chi}_1^0},  \widetilde{\chi}_1^0 \text{ coupl.}$   |
| $\widetilde{G}$ LSP                | gravitino                                                         | eV-TeV                     | $(p/\mathrm{M}_\mathrm{P})^n$                  | therm. prod.          | $\leftarrow \text{cold}$         | $\widetilde{\tau}_1$ prod. at colliders                                            |
|                                    | (spin 3/2)                                                        |                            | extremely weak                                 | NLSP decay            | $\leftarrow \text{warm}$         | $+ \tilde{\tau}_1$ collection                                                      |
|                                    | superpartner                                                      |                            | ${\rm M}_{\rm P}=2.4{\times}10^{18}~{\rm GeV}$ |                       |                                  | + $\tilde{\tau}_1$ decay analysis                                                  |
|                                    | of the graviton                                                   |                            |                                                |                       | BBN                              | $\hookrightarrow m_{\widetilde{G}}, \mathrm{M}_{\mathrm{P}}$ (?), $T_{\mathrm{R}}$ |
| $\widetilde{a}$ LSP                | axino                                                             | eV-GeV                     | $(p/f_a)^n$                                    | therm. prod.          | $\leftarrow \text{cold/warm}$    | $\tilde{\tau}_1$ prod. at colliders                                                |
|                                    | (spin 1/2)                                                        |                            | extremely weak                                 | NLSP decay            | $\leftarrow \text{warm/hot}$     | $+ \tilde{\tau}_1$ collection                                                      |
|                                    | superpartner                                                      |                            | $f_a \gtrsim 6 \times 10^8  { m GeV}$          |                       |                                  | $+ \widetilde{\tau}_1$ decay analysis                                              |
|                                    | of the axion                                                      |                            |                                                |                       | BBN                              | $\hookrightarrow m_{\widetilde{a}} \ (?), f_a, T_{\mathrm{R}} \ (?)$               |

## Scenario 3 - EWIP DM (+ Axion DM)

| candidate                  | identity                                                          | mass                       | interactions                                  | production            | constraints                      | experiments                                                                        |
|----------------------------|-------------------------------------------------------------------|----------------------------|-----------------------------------------------|-----------------------|----------------------------------|------------------------------------------------------------------------------------|
| a                          | axion                                                             | < 0.01  eV                 | $(p/f_a)^n$                                   | misalign. mech.       | $\leftarrow \operatorname{cold}$ | direct searches with                                                               |
|                            | (spin 0)<br>NGoldst. boson<br>PQ symm. break.                     |                            | $f_a \gtrsim 6 \times 10^8  {\rm GeV}$        |                       | CMB                              | $\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$                                      |
| $\widetilde{\chi}_1^0$ LSP | lightest neutralino                                               | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$                                  | therm. relic          | $\leftarrow \text{cold}$         | indirect searches                                                                  |
|                            | (spin 1/2)                                                        |                            | weak                                          | $\widetilde{G}$ decay | $\leftarrow \text{warm/hot}$     | direct searches                                                                    |
|                            | mixture of                                                        |                            | $M_{ m W}\sim 100~{ m GeV}$                   |                       |                                  | collider searches                                                                  |
|                            | $\widetilde{B},\widetilde{W},\widetilde{H}^0_u,\widetilde{H}^0_d$ |                            |                                               |                       | BBN                              | $\hookrightarrow m_{\widetilde{\chi}_1^0},  \widetilde{\chi}_1^0 \text{ coupl.}$   |
| $\widetilde{G}$ LSP        | gravitino                                                         | eV-TeV                     | $(p/\mathrm{M}_\mathrm{P})^n$                 | therm. prod.          | $\leftarrow$ cold                | $\tilde{	au}_1$ prod. at colliders                                                 |
|                            | (spin 3/2)                                                        |                            | extremely weak                                | NLSP decay            | $\leftarrow \text{warm}$         | $+ \tilde{\tau}_1$ collection                                                      |
|                            | superpartner                                                      |                            | ${\rm M}_P = 2.4 \times 10^{18} \; {\rm GeV}$ |                       |                                  | $+ \tilde{\tau}_1$ decay analysis                                                  |
|                            | of the graviton                                                   |                            |                                               |                       | BBN                              | $\hookrightarrow m_{\widetilde{G}}, \mathrm{M}_{\mathrm{P}}$ (?), $T_{\mathrm{R}}$ |
| $\widetilde{a}$ LSP        | axino                                                             | eV-GeV                     | $(p/f_a)^n$                                   | therm. prod.          | $\leftarrow \text{cold/warm}$    | $\tilde{	au}_1$ prod. at colliders                                                 |
|                            | (spin 1/2)                                                        |                            | extremely weak                                | NLSP decay            | $\leftarrow \text{warm/hot}$     | $+ \tilde{\tau}_1$ collection <b>events</b>                                        |
|                            | superpartner                                                      |                            | $f_a \gtrsim 6 \times 10^8  { m GeV}$         |                       |                                  | $+ \tilde{\tau}_1$ decay analysis                                                  |
|                            | of the axion                                                      |                            |                                               |                       | BBN                              | $\hookrightarrow m_{\widetilde{a}} \ (?), f_a, T_{\mathrm{R}} \ (?)$               |

# Scenario 3 - EWIP DM (+ Axion DM)

| candidate                  | identity                                                                                                                | mass                       | interactions                                                            | production                         | constraints                                                      | experiments                                                                                                                                                                                             |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a                          | axion<br>(spin 0)<br>NGoldst. boson<br>PQ symm. break.                                                                  | $< 0.01 \ {\rm eV}$        | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | misalign. mech.                    | $\leftarrow$ cold<br>CMB                                         | direct searches with<br>microwave cavities<br>$\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$<br>still viable                                                                                             |
| $\widetilde{\chi}_1^0$ LSP | lightest neutralino<br>(spin 1/2)<br>mixture of<br>$\widetilde{B}, \widetilde{W}, \widetilde{H}_u^0, \widetilde{H}_d^0$ | $\mathcal{O}(100{ m GeV})$ | g, g', $y_i$<br>weak<br>$M_{ m W} \sim 100~{ m GeV}$                    | therm. relic $\widetilde{G}$ decay | ← cold<br>← warm/hot<br>BBN                                      | indirect searches<br>direct searches<br>collider searches<br>$\hookrightarrow m_{\tilde{\chi}_1^0},  \tilde{\chi}_1^0 \text{ coupl.}$                                                                   |
| $\widetilde{G}$ LSP        | gravitino<br>(spin 3/2)<br>superpartner<br>of the graviton                                                              | eV–TeV                     | $(p/M_P)^n$<br>extremely weak<br>$M_P = 2.4 \times 10^{18} \text{ GeV}$ | therm. prod.<br>NLSP decay         | ← cold<br>← warm<br>BBN                                          | $ \widetilde{\tau}_1 \text{ prod. at colliders} $<br>+ $\widetilde{\tau}_1 \text{ collection}$<br>+ $\widetilde{\tau}_1 \text{ decay analysis}$<br>$\hookrightarrow m_{\widetilde{G}}, M_P (?), T_R$    |
| $\widetilde{a}$ LSP        | axino<br>(spin 1/2)<br>superpartner<br>of the axion                                                                     | eV–GeV                     | $(p/f_a)^n$<br>extremely weak<br>$f_a \gtrsim 6 \times 10^8  { m GeV}$  | therm. prod.<br>NLSP decay         | $\leftarrow \text{ cold/warm}$ $\leftarrow \text{ warm/hot}$ BBN | $\widetilde{\tau}_1$ prod. at colliders<br>+ $\widetilde{\tau}_1$ collection <b>events</b><br>+ $\widetilde{\tau}_1$ decay analysis<br>$\hookrightarrow m_{\widetilde{a}}$ (?), $f_a$ , $T_{\rm R}$ (?) |
| Frank D. Ste               | ffen (Max Planck Insti                                                                                                  | itute for Physics.         | Munich)                                                                 | Dark Matter                        | Particle Physics a                                               | still viable                                                                                                                                                                                            |

#### Conclusion

To clarify the (particle ?) identity of dark matter, it will be crucial to have experimental & obs. data from the many complementary approaches: direct, indirect & collider dm searches, **BBN** studies, ...