

Novae Reaction Rates and Measurements

Measuring Nuclear Reaction Rates One Step at a Time Shawn Bishop, TUM

Talk Outline

- Astrophysics Primer
 - Experimental nuclear astrophysics
 - The novae phenomenon
 - Reaction Rates & Measurements
- Facilities at MLL
 - Mapping Explosive Rates: Q3D Spectrometer
 - Doppler Lifetime Station
- Search for Supernova Signal in the Fossil Record
 - Intersection of astrophysics, nuclear physics techniques, geophysics & microbiology
- Summary

We are star-stuff. -- Carl Sagan **ASTROPHYSICS PRIMER**

Ø

Excellence Cluster Universe

Technische Universität München

A Recent Surprise from Nova Cas. 1995

ISSN 1063-7729, Astronomy Reports, 2010, Vol. 54, No. 7, pp. 611–619. C Deliades Publishing, Ltd., 2010. Original Russian Text C A.F. Iyudin, 2010, published in Astronomicheskii Zhurnal, 2010, Vol. 87, No. 7, pp. 667–676.

Observation of Line Emission of the Isotope ²²Na from a Classical Nova

A. F. lyudin

D.V. Skobel' tsin Nuclear Physics Research Institute, M.V. Lomonosov Moscow State University, Moscow, Russia Received August 26, 2009; in final form, February 5, 2010

Technische Universität München

A Thermonuclear Thermometer....

Erice School, 2010

^{34m}CI: A Thermonuclear Thermometer

- 3⁺ isomeric state gives rise to 2.12 MeV γ -line \approx 42% per β decay
- Connected directly to ground by M3 transition (45.6% of the time)
- Radiation field can also connect isomeric state to ground state by induced transitions into higher states
 - If this is large enough, lifetime will be reduced from 32 min.
- System of coupled differential equations has been solved

Coc et al., PRC61 (1999)

Some Key Nuclear Reactions

- ^{34m}Cl is a "last chance" γ-emitter for novae nucleosynthesis
 - Bypassed: ³³Cl(p,γ)³⁴Ar
 - Produced: ${}^{33}S(p,\gamma){}^{34m}CI$
 - Destroyed: ${}^{34m}CI(p,\gamma){}^{35}Ar$
- Excited states need to be "mapped out"
 - Energy, width, branching ratio, spin
- Equipment and Instruments
 - Q3D spectrometer
 - 95% hpGe detector (Canberra)
 - Si-detector charged particle telescopes (Micron UK)

What Needs to be Measured to Determine the Rates

- Rates in explosive h-burning dominated by resonant proton-capture into excited states
- Properties of these states uniquely determine explosive X(p,γ)Y reaction rates
- Nuclear properties required:
 - Spin
 - Excitation energy
 - Lifetime
 - Proton and/or γ partial decay-widths
- Goal: Build facilities at MLL to accomplish these

Universe

Measuring Astrophysical Rates one Step at a Time

FACILITIES

MLL Overview

- 14 MV Terminal voltage
- Pulsed beam
 - 200 ns between pulses
 - Pulse width ~ 1 ns
- Cesium sputtering ion source
 - Negative ion beams
 - No Nobel gas ion beams (except ^{3,4}He)
- Isobaric separation at 90° bending magnet

ТШ

Accelerator Laboratory: Overview

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 \sum_i \omega \gamma_i e^{-\frac{E_i}{kT}}$$

MAPPING EXPLOSIVE REACTION RATES: THE Q3D

Q3D High Resolution Spectrograph at TUM

Used to search for, and study, excited states of nuclei by populating those states using one-step transfer reactions: X(³He,t)Y, as an example

Position of triton along Focal Plane is a measure of the excitation energy.

E,

${}^{34}S({}^{3}He,t){}^{34}CI, E_{He} = 25 \text{ MeV}, \theta = 15^{\circ}$

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 \sum_i \omega \gamma_i e^{-\frac{E_i}{kT}}$$

$$\omega \gamma = \frac{2J_i + 1}{\left(2J_p + 1\right)\left(2J_X + 1\right)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_p + \Gamma_\gamma} = g(1 - B_p)B_p \frac{\hbar}{\tau}$$

MAPPING EXPLOSIVE REACTION RATES: THE Q3D

- Transfer reaction populates astrophysical state
- Product Y^{*} will either:
 - gamma-decay
 - proton-decay
- Decay cone for γ-decay is small
 - Detection of Y with Q3D, reconstruct kinematics, determine fraction of γ-decays
- Decay cone for proton decay large
 - Detect X and p together with Si, determine proton decay fraction

$$\omega \gamma = \frac{2J_i + 1}{(2J_p + 1)(2J_X + 1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_p + \Gamma_{\gamma}} = g(1 - B_p) B_p \frac{\hbar}{\tau}$$
$$B_p = \Gamma_p / (\Gamma_p + \Gamma_{\gamma})$$

DOPPLER LIFETIME STATION

Measurement of the Doppler shifted gamma yields velocity distribution of nucleus at instant of decay.

Decay probability in
$$[t,t+dt]$$
: $P_{\gamma}dt=rac{1}{ au}\exp\left(-t/ au
ight)dt$

Fraction of N total nuclei that decay with velocity in [β (t) cos ϕ , β (t + dt) cos ϕ]:

$$F(\tau)dt = V_t \frac{1}{\tau} \exp\left(-t/\tau\right) dt$$

Velocity distribution formed by an ensemble of N decaying particles:

Target Chamber Innards

Installation on MLL Beamline

Doppler Shift Station: Target Chamber

- Chose the ³²S(³He,α)³¹S reaction
 - 1st and 2nd excited states previously observed
 - Lifetimes known
- Energy spacing large
 - Gammas easily distinguishable
 - Alpha particles well-separated kinematically
- ³²S beam energy: 80 MeV
- Target:

ПΠ

Excellence Cluster

- Au foil, 15 micron thick
- 1st 0.5 micron implanted with ³He at FZD
- Analysis presently underway

TUT

Excellence Cluster

Particle ID Plot (Uncalibrated)

ТШ

Excellence Cluster

Si-Detector (x,y) Hit Pattern (Raw and Uncalibrated)

ACCELERATOR MASS SPECTROMETRY

Accelerator Mass Spectroscopy at TUM

150 My BP

The dead don't talk, but perhaps they have left us a message

BIOGENIC RECORD OF A SUPERNOVA?

LMU Excellence Cluster Universe

Ocean Drill Core Samples

Technische Universität München

Fe Concentration in Drill Core

_ehrstuhl E12

Excellence Cluster

Estimate of ⁶⁰Fe in the Magnetofossils

Atom flux of iron from bacteria growth and sedimentation rate:

$$\Phi_{\rm Fe} = \mathcal{C}_{\rm Fe} \frac{N_A}{M_{\rm Fe}} \rho \frac{dh}{dt}$$

Atom flux of ⁶⁰Fe: $\Phi_{60} = \frac{\phi_{60}}{\tau}$; $\phi_{60} = 3.8 \times 10^8$ atom/cm² [Knie et al., PRL (2004)]

Ratio of fluxes gives atom ratios:

	⁶⁰ Fe/Fe		
	$\tau = 250 \text{ kyr}$	$\tau = 500 \text{ kyr}$	$\tau = 750 \text{ kyr}$
ϕ_{60}	1.8×10^{-12}	9.0×10^{-13}	6.0×10^{-13}
$0.006 \times \phi_{60}$	1.1×10^{-14}	5.4×10^{-15}	3.6×10^{-15}

Amount of drill core: 100 - 200 grams; \rightarrow approx. 2 - 4 mg magnetite

Earth: A SN Yield Detector

Number of atoms "i" deposited in uniform layer on Earth's surface (now include decay) after a time T since SN occurred: $F_i A_{int} - \lambda_i T = F_i - \lambda_i T$

$$N_i = \frac{F_i A_{int}}{A_e} e^{-\lambda_i T} = \frac{F_i}{4} e^{-\lambda_i T}$$

Ratio of any two radio-nuclides:

$$R = \frac{N_i}{N_j} = \frac{M_i}{M_j} \frac{A_j}{A_i} \exp\left[(\lambda_j - \lambda_i)T\right]$$

Independent of unknown distance D!

ТЛП

Excellence Cluster

The Problem of AMS Detection Beyond Iron

Could These be the Result of Microbial Activity?

External ferrihydrite (rust) **Distinct internal** Fe-rich minerals 500 nm

Banded Iron Formation

Summary

- Astrophysics program at TUM underway
- Objective: Properties of nuclear states for nova
- Status of program
 - Q3D spectrograph for measuring/searching out excited states
 - Doppler lifetime station commissioning underway
 - Arrival of neutron detector in July to extend Doppler station to transfer reaction channels with neutron ejectiles
 - Try to utilize pulsed-beam feature of MLL Tandem
 - Another PhD student required (know any candidates?)
- Supernova search in microfossils
 - Initial phases of project underway (another PhD project)
 - Manuscript presently under peer review: Icarus

Erice School, 2010

ТШΠ

Excellence Cluster

Bacteria and Archean Nuclear Reactors

- Connected to when bacterial life evolved to cope with increasingly richer O₂ atmosphere
 - Ca. 3 Gyr before present
- Erosion carries UO₂ to into shallow basins
- Photosynthesis of newly evolving bacteria produces O₂ in shallow water, bringing U⁶⁺ into purely dissolved form in water column
- Water motion/currents carry U⁶⁺ out of O₂rich water
 - − Redox boundary changes $U^{6+} \rightarrow U^{4+}$
 - U⁴⁺ is precipitated out of solution at the oxicanoxic boundary
 - Highly concentrated in small zone
- Possible source of natural nuclear reactor
 - Look for depletions in ²³⁵U

If Companion is AGB

- ³⁶S is s-process: not nova
- AGB Star: ³⁶Cl(n,p)³⁶S
- ³⁴S in nova from ³⁴Cl decay
- Sulfur measurements should be target of grains

